The Response of Ecosystem Services to Landscape Pattern Changes in the Guangdong-Hong Kong-Macao Greater Bay Area from 1996 to 2015
-
摘要: 以粤港澳大湾区(简称“湾区”)为研究区,利用1996—2015年土地覆被数据和数字高程数据,采用生态系统服务价值当量估算法、景观指数分析、空间自相关分析等方法,分析1996—2015年湾区景观格局的时空演变规律,定量评估湾区的生态系统服务价值,探讨湾区的生态系统服务价值对土地利用景观格局变化的响应.结果表明:(1)湾区景观以耕地、林地为主,20年间湿地、建设用地面积大幅度增加,增长幅度分别为29.88%、150.06%;(2)湾区的生态系统服务价值(Ecological Service Values, ESV)在1996—2015年间呈持续增长趋势,在2005—2010年间增长速率较高,20年间共增长123.13亿元; (3)湾区的ESV变化冷热点分布区的土地利用转移规律性较强,冷点分布区的土地利用变化多为草地转建设用地或湿地增加,而热点分布区的土地利用变化多为草地转为湿地或水域,且二者空间分布相关性高; (4)湾区的ESV与AREA_MN、DIVISION的敏感性程度较高,说明景观类型越丰富、分割程度越低,越有利于提升景观整体的生态系统服务价值; (5)湾区的ESV强度与土地利用程度综合指数不存在显著的空间相关关系,自2005年开始,湾区的生态环境逐步改善,城市绿色发展进程加快.Abstract: The law governing the temporal and spatial evolution of landscape pattern in the Guangdong-Hong Kong-Macao Greater Bay Area (referred to as the Bay Area) from 1996 to 2015 is analyzed, the value of ecosystem ser-vice in the bay area is evaluated quantitatively, and the response of ecosystem service value to landscape pattern change is discussed, based on the digital elevation data and land cover data and using the methods of ecosystem service value equivalent estimation, landscape pattern index analysis and spatial autocorrelation analysis. The fo-llowing results are obtained. First, the landscape of the Bay Area is dominated by arable land and forest land. Du-ring the 20 years, wetland and urban land increased significantly, with growth rates of 29.88% and 150.06%, respectively. Second, the ecological service value (ESV) of the Bay Area showed a continuous growth from 1996 to 2015, with a high growth rate from 2005 to 2010 and with a total growth of 123.13 billion yuan in the 20 years. Third, distribution of the cold and hot spots of the Bay Area ESV change shows strong regularity of land use transfer. The change of land use in cold spot area is mostly from grassland to construction land or increased wetland, while land use change in hot spot area is mostly from grassland to wetland or water area, and the spatial distribution correlation between them is high. Fourth, the Bay Area ESV is more sensitive to AREA_MN and DIVISION, indicating that the more abundant the landscape type is, the lower the degree of segmentation is and the more beneficial it is to enhance the overall ecosystem service value. Finally, there is no significant spatial correlation between the ESV intensity and the ccomprehensive index of land use degree in the Bay Area. Since 2005, the environment in the Bay Area has gradually improved, accelerating the urban green development process.
-
生态系统服务(Ecological Service,ES)是指通过生态系统的结构、过程和功能直接或间接得到的生命支持产品和服务[1-3], 其价值评估研究有利于深入了解生态系统功能状况和人地关系[4-5],是近年来国内外生态学、地理学和环境学等领域的研究热点[6-7].目前,国内外对生态系统服务价值(Ecological Service Values, ESV)的定量评估研究日渐完善,其中价值量评估中的当量因子法应用最广泛. COSTANZA等[1]于1997年提出全球尺度生态系统服务的功能划分标准和价值评估体系,成为生态系统服务相关领域研究的重要基础,并于2014年进行了更新和校正[2];刘永超等[8]在文献[2]的基础上修订了建设用地参数,并研究了中美两大港湾流域的生态系统服务演变进程;谢高地等[9]在文献[1]的基础上提出了“中国陆地生态系统单位面积生态系统服务价值当量表”,其耕地、建设用地和湿地等当量因子的设置更加适用于中国国情以及社会发展现状;随后,学者们[10-13]对ESV的评估方法进行修订探讨和案例研究,但绝大多数国内研究仍以文献[9]的单位面积价值当量表为理论基础[14-15].
土地利用/覆被变化(Land Use/Cover Change,LUCC)为人类活动影响地球陆地表面自然生态系统的最直接的表征形式[16-17],也是间接影响生态系统服务功能的因素之一,因此,对景观格局与生态系统服务价值进行分析研究,有助于理解生态系统服务的作用机制,从而优化配置土地资源,实现可持续发展[18].关于LUCC对ESV的影响研究已有较为丰硕的成果,如:从景观指数的角度探讨景观格局与生态系统服务之间的相关性[15, 19-20],从水源、森林和湿地等单个生态系统探讨生态格局变化下的生态系统服务演变规律[21-22],从生态安全格局角度研究生态系统服务价值的时空演变规律[23-24].目前,此类研究多从土地利用转移引起的ESV损益矩阵角度进行分析,忽略了不同土地利用格局对ESV影响程度的空间异质性.同时在探讨生态系统服务的影响机制时,大多数学者用单一方法(如土地利用类型、土地利用转移矩阵或景观指数等)对ESV进行相关性分析,综合多方法的景观格局变化与ESV的相关性分析尚不多见.
粤港澳大湾区(下文简称“湾区”)已具备了经济体量大、产业体系完备和基础设施配套完善等特征,但其资源利用率和生境质量与世界一流湾区仍存在一定差距[25],因此,作为区域发展政策的有机组成部分,湾区的生境保护政策也需要寻找新的方向与着力点.考虑到文献[9]的部分当量因子参数不适用于全球尺度的ESV估算研究,物理量评估法中不同模型的参数标准难以统一,且测算繁琐、数据需求量较大[26],而为了服务国家生态安全的重大战略需求和发展与国际接轨的绿色城市环境,课题组的后续研究拟为对各世界级大湾区进行对比研究,因此,本研究选用国际大尺度研究通用的Costanza当量因子表[2]估算湾区的ESV,分析湾区的ESV时空演变特征,并从土地利用转移矩阵、景观指数和土地利用程度综合指数三方面,运用热点分析、相关性分析和双变量空间自相关分析等方法,进一步探讨景观格局演变对生态系统服务价值的影响规律,拟为湾区的空间规划提供科学参考,同时为政府相关部门的宏观决策提供科学依据.
1. 研究区概况与数据来源
1.1 研究区概况
粤港澳大湾区位于21.57° N~24.39° N,111.36° E~115.41° E之间,总面积为5.5×104 km2,由香港、澳门特别行政区和广东省的广州、深圳、珠海、佛山、惠州、东莞、中山、江门、肇庆市组成(图 1),是中国开放程度最高、经济活力最强的区域之一.湾区是由珠江水系的西江、北江和东江下游所带来的泥沙在河口湾内堆积而成的复合型三角洲,地处南亚热带,属亚热带海洋性季风气候,雨量充沛,热量充足,雨热同季;多年平均气温为21.9 ℃; 受季风气候影响,降雨量集中在4—9月,年平均降雨量为1 600~2 300 mm;冬季盛行偏北风,天气干燥;夏季盛行西南和东南风,高温多雨.近年来,湾区土地开发强度大,土地利用斑块破碎化严重,湾区的生境问题面临严峻的挑战.
1.2 数据来源
研究数据包括粤港澳大湾区的土地利用数据和数字高程数据:
(1) 土地利用数据:选取1996、2000、2005、2010、2015年的土地利用数据,来源于欧空局(ESA)CCI_LC项目所提供的全球土地覆被栅格数据[27],分辨率为300 m.本研究参考《土地利用现状分类》 < GB/T21010-2007>标准[28],结合湾区实际与研究需要,将原土地覆被类型划分为耕地、林地、草地、水域、湿地、建设用地和未利用地7类;借助ArcGIS10.2的创建渔网工具,将研究区划分为57 159个1 km×1 km的网格单元,进而统计网格内各土地利用类型面积占比,用于后期生态系统服务价值和土地利用程度综合指数的计算.
(2) 数字高程数据:采用GDEMV2的数字高程数据,分辨率为30 m,来源于中国科学院计算机网络信息中心地理空间数据云平台[29].
2. 研究方法
2.1 土地利用景观格局演变分析方法
本研究从土地利用转移矩阵图谱、景观指数和土地利用程度综合指数三方面具体刻画1996—2015年湾区的土地利用类型转移情况、景观格局演变规律和土地利用开发程度,综合反映人类活动影响下湾区的土地利用景观格局演变过程.
2.1.1 土地利用转移矩阵图谱分析
土地利用转移矩阵用于具体刻画区域土地利用变化的结构特征,反映人类活动所引导的土地利用变化方向.在此基础上运用GIS、RS和叠加运算等技术将土地利用转移矩阵的非空间属性数据空间制图,有利于对土地利用变化的空间异质性和演变规律进行可视化研究.本研究运用转移矩阵图谱来反映1996—2015年湾区土地利用类型的转化过程,揭示土地利用格局的时空演化过程,其数学表达形式为[30]:
S=[S11S12⋯S1nS21S22⋯S2n⋮⋮⋮Sn1Sn2⋯Snn], (1) 其中,Sij为转移前的i地类转换成转移后的j地类的面积,i、j (i, j=1, 2, …, n)分别为转移前、转移后的土地利用类型,n为土地利用类型数.
2.1.2 景观指数分析
景观指数能够高度浓缩景观格局信息,反映景观结构组成和空间配置,定量描述景观格局演变及其对生态过程的影响,因此,景观指数分析是景观格局时空特征的重要研究手段[31-32].根据研究区的复杂性以及数据的栅格格网属性,本文从斑块类型尺度筛选相关指数,从面积-边缘、形状、聚集度3个方面选取6种指数[33-34]:斑块密度(PD)、平均斑块面积(AREA_MN)、面积加权平均斑块分形维数(FRAC_AM)、斑块结合度指数(COHESION)、景观分割度指数(DIVISION)和斑块聚集度指数(AI)(表 1),运用Fragststs4.2导入粤港澳大湾区的5期栅格数据,得到1996—2015年湾区的整体景观指数以及各土地利用类型的景观指数.
表 1 景观指数及其内涵Table 1. The landscape pattern index and its implications指数类别 景观指数 涵义描述 面积-边缘 斑块密度 描述某一斑块类型在景观中的分布密度 平均斑块面积 描述景观中某一种斑块的平均面积 形状 面积加权平均斑块分形维数 描述某一斑块类型形状的复杂性,即人类活动干扰程度 聚集度 斑块结合度指数 描述在类型水平上度量斑块类型的物理连接度 景观分割度指数 描述某一斑块类型在景观中的分割程度 斑块聚集度指数 描述斑块类型景观中不同斑块个体分布的聚集程度 2.1.3 土地利用程度综合指数分析
土地利用程度综合指数可在一定层面上反映人类活动对环境的干扰程度,多用于定量化土地利用程度的相关研究.按照土地自然综合体在社会因素影响下的自然平衡状态将土地利用程度分为4级,并分级赋值:未利用地赋为1级,林地、草地、湿地和水域赋为2级,耕地赋为3级,城镇用地赋为4级,从而给出土地利用程度的定量表达[35].
土地利用程度综合指数公式为:
L=n∑i=1AiCi, (2) 其中,L为土地利用程度综合指数,Ai为第i级的土地利用程度分级指数,Ci为第i级土地利用程度分级所占的面积比例.
2.2 生态系统服务价值演变特征分析方法
2.2.1 生态系统服务价值计算方法
生态系统服务价值估算法主要包括价值量评估法、物质量评估法和能值评估法,其中价值量评估法中的当量因子法应用最广泛.为了便于课题组下一步的研究(将粤港澳大湾区与各世界级大湾区做对比研究),本文采用修正的单位面积生态系统服务价值当量表[2](表 2),该表适用于全球尺度的生态系统服务价值估算.
表 2 研究区土地利用类型的生态系统服务价值系数Table 2. The ecosystem service value coefficients of land use type元·hm-2·a-1 土地利用类型 生态系统服务价值系数 耕地 41 753 林地 40 365 草地 31 245 水域 93 840 湿地 1 051 305 建设用地 49 958 未利用地 0 为消除行政边界处网格面积不完整性问题,对每个网格的生态系统服务价值和强度进行估算,并进行空间特征分析.每个网格的生态系统服务价值计算公式[1]为:
ESVj=n∑i=1AijCi, (3) ESV=m∑j=1ESVj, (4) 其中,ESV为研究区的生态系统服务价值, ESVj为第j个网格的生态系统服务价值,Aij为第j个网格的土地利用类型i的分布面积(hm2),Ci为土地利用类型i的单位面积生态系统服务价值系数(元·hm-2·a-1),n为土地利用类型数,m为网格个数.
第j个网格的生态系统服务价值强度计算公式为:
¯ESVj=ESVjS, (5) 其中,ESVj为第j个网格的生态系统服务价值强度,S为第j个网格的面积.
2.2.2 生态系统服务价值变化的热点分析法
热点分析主要用于识别具有统计显著性的高值(热点)和低值(冷点)的空间聚类.若某一要素为高值或低值,且被同样为高值或低值的其他要素所包围,则判定该要素具有显著的聚集意义.在本研究中,当某斑块在20年间的ESV显著增加,且其周围斑块的ESV同样显著升高,则判定该斑块为ESV增加聚集区,即ESV变化的热点分布区;若某斑块及其周围斑块20年间的ESV均显著下降,则判定该斑块为ESV减少聚集区,即为ESV变化的冷点分布区.因此,本研究运用热点分析的Getis-Ord Gi*指数[36],探索1996—2015年湾区生态系统服务价值变化量的冷、热点聚集效应,得到变化冷、热点图谱,以便于后期的研究分析.
Getis-Ord Gi*指数的公式[36]为:
G∗i=n∑j=1Wij(d)xjn∑j=1xj. (6) 对Gi*进行标准化处理[36]:
Z(G∗i)=G∗i−E(G∗i)√Var(G∗i), (7) 其中,E(Gi*)、Var(Gi*)分别为Gi*的数学期望、方差,Wij为空间权重.若Z(Gi*)>1.96,则表示网格i为ESV变化的热点区;若1.65 < Z(Gi*)≤1.96, 则表示网格i为ESV次热点区;若-1.65 < Z(Gi*)≤1.65, 则表示网格i为ESV不显著变化区;若-1.96 < Z(Gi*)≤-1.65, 则表示网格i为ESV次冷点区;若Z(Gi*)≤-1.96, 则表示网格i为ESV冷点区.
2.3 生态系统服务价值对土地利用景观格局变化的响应分析方法
2.3.1 叠加分析
本文基于1996—2015年的土地利用转移矩阵空间图谱和1996—2015年的生态系统服务价值变化量的冷热点分布图,采用ArcGIS的空间分析技术进行叠加运算,从空间层面直接反映ESV变化的冷、热点分布区内土地利用类型的转移情况,分析局部土地利用变化对ESV影响的空间异质性特征.
2.3.2 Person相关性分析
建立景观指数与生态系统服务价值的耦合关系,能够较好地反映景观指数变化对生态系统服务价值的影响,研究选用SPSS软件的Spearman系数对1996—2015年各地类的景观指数和生态系统服务价值进行双变量相关性分析,衡量区域景观格局的变化趋势与区域生态系统服务价值是否具有密切的相关程度,同时分析生态系统服务价值对各景观指数的敏感性,并探讨其影响程度.
2.3.3 双变量空间自相关分析
双变量空间自相关分析是衡量多个变量在空间分布中是否具有集聚性,包括全局空间自相关和局部空间自相关两部分[37].全局空间自相关是用来描述研究区域内变量之间的空间关联程度和显著性;局部空间自相关分析可识别在不同空间位置上变量间可能存在的不同空间关联模式,实现空间局部变化的动态性研究[38].
本研究运用GeoDa空间分析软件,建立空间距离权重矩阵,对湾区的生态系统服务价值与土地利用程度综合指数进行空间相关性分析,利用LISA分布图探讨两者的空间关联程度及其空间异质性特征.将ESV强度大且土地利用程度高的斑块归为“高—高”集聚类,以此类推,将各类型栅格数占比制表,以便于分析各类栅格的数量变化.
以下为全局Moran's I指数与局部Moran's I指数的计算公式[39]:
I=n∑i=1n∑j=1wij(xi−ˉx)(xj−ˉx)S2(∑i∑jwij), (8) Ii=(xi−ˉx)n∑j=1wij(xi−ˉx)S2, (9) S2=1nn∑i=1(xi−ˉx)2, (10) 其中,I为全局Moran's I指数,Ii为局部Moran's I指数,n为空间单元数量,xi和xj分别为单元i和单元j的观测值,xi-x为第i个空间单元上的观测值与平均值的偏差,wij为单元i和单元j之间的空间权重值,S2为方差.
3. 结果与分析
3.1 土地利用变化时空格局
由图 2、表 3可知:(1)1996—2015年,湾区景观以耕地和林地为主,2015年2类用地面积分别为湾区总面积的36.85%、37.80%,20年间2类用地面积均有所减少.湾区地处三角洲平原且水系众多,适合农业种植和灌溉,其耕地主要分布在广佛地区、江门市以及东莞市部分地区,但城市周边耕地被城镇建设逐年占用,到2015年,耕地面积共减少约2 152.48 km2,变化幅度约为9.49%;林地主要分布于肇庆市、广州市北部以及惠州市北部等地,20年间面积共减少约355.52 km2,减少幅度较弱(约为1.66%). (2)1996年的草地主要分散分布于佛山市、东莞市和深圳市西部等地,20年间佛山市和东莞市的大面积草地在城镇更新中被逐年占用,草地总面积减少约1 150.93 km2,变化幅度高达21.27%. (3)由于湾区正处于珠江水系的入海口,水域分布广且支流众多,20年间共减少约269.68 km2. (4)随着湾区对红树林等滩涂岸带的防护重视,湿地的占地面积呈缓慢的良性增长状态,增长幅度约为29.88%. (5)近20年间,湾区建设进入了快速发展阶段,为满足经济发展的大量用地需求,建设用地面积呈倍数级增长. 1996年主要聚集于广州市,零散分布于深圳市、香港特别行政区和东莞市的沿海地区;2015年扩张到佛山市、东莞市、深圳市的内陆地区、澳门特别行政区和珠海市等地,在珠三角沿海带形成包围趋势,占地面积共增加约3 841.82 km2.
表 3 1996—2015年粤港澳大湾区土地利用面积变化表Table 3. The land use area change of the Guangdong-Hong Kong-Macao Greater Bay Area from 1996 to 2015景观类型 1996年 2000年 2005年 2010年 2015年 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 耕地 22 679.08 40.72 22 626.06 40.62 21 610.17 38.80 20 861.11 37.45 20 526.60 36.85 林地 21 407.27 38.43 21 353.81 38.34 21 148.14 37.97 21 108.55 37.90 21 051.75 37.80 草地 5 411.79 9.72 5 189.26 9.32 4 604.12 8.27 4 317.84 7.75 4 260.86 7.65 水域 3 325.28 5.97 3 320.67 5.96 3 228.71 5.80 3 113.97 5.59 3 055.60 5.49 湿地 307.76 0.55 314.81 0.57 344.80 0.62 392.63 0.70 399.73 0.72 建设用地 2 560.20 4.60 2 887.21 5.18 4 758.59 8.54 5 901.40 10.60 6 402.02 11.49 未利用地 6.59 0.01 6.15 0.01 3.42 0.01 2.45 0.00 1.40 0.00 合计 55 697.97 100.00 55 697.97 100.00 55 697.95 100.00 55 697.95 100.00 55 697.96 100.00 3.2 生态系统服务价值时空变化特征分析
由图 3、表 4可知:(1)1996—2015年,湾区的ESV呈现持续增加趋势,共增长约123.13亿元,增长率约为4.46%. (2)湾区的ESV高值区主要集中于湾区腹部地区,主要分布在中山市北部、顺德区、番禺区东部、澳门特别行政区北部和香港特别行政区的新界东部山区,20年间在新会市和四会市也有少量增加. (3)湾区的ESV低值区广泛分布于湾区的西部与东部等地,主要分布在肇庆市西北部、江门市西南部以及惠州市东部及北部等地.
表 4 粤港澳大湾区各地类的ESV以及贡献率Table 4. The rate and change of ESV contribution of different types of land use in the Guangdong-Hong Kong-Macao Greater Bay Area景观类型 1996年 2000年 2005年 2010年 2015年 ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%耕地 946.92 34.51 944.71 34.28 902.29 32.19 871.01 30.48 857.05 29.90 林地 864.10 31.50 861.95 31.28 853.64 30.45 852.05 29.81 849.75 29.64 草地 169.09 6.16 162.14 5.88 143.86 5.13 134.91 4.72 133.13 4.64 水域 312.04 11.37 311.61 11.31 302.98 10.81 292.22 10.23 286.74 10.00 湿地 323.55 11.79 330.96 12.01 362.49 12.93 412.78 14.44 420.24 14.66 建设用地 127.90 4.66 144.24 5.23 237.73 8.48 294.82 10.32 319.83 11.16 未利用地 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 合计 2 743.61 100.00 2 755.60 100.00 2 802.99 100.00 2 857.79 100.00 2 866.74 100.00 由表 4可知:(1)1996—2015年,耕地、林地、草地和水域的ESV贡献率均处于持续减少状态,分别减少了4.61%、1.86%、1.52%和1.37%. (2)湿地的ESV贡献率持续增加,在2015年达到最大值(14.66%),20年间共增长约2.87%. (3)由于处于经济发展前期,湾区建设用地呈加速扩张趋势,其贡献率也呈现持续增加的状态,共增长了6.50%,是粤港澳大湾区ESV增长的主要贡献力. (4)湾区单位面积ESV值呈持续上升的趋势,在2015年达到最高值(约为514.69万元/km2),其变化速率则在2005—2010年间最高(约为1.95%).
3.3 生态系统服务价值对土地利用景观格局演变的响应
从土地利用转移矩阵、景观指数和土地利用程度综合指数三方面,运用空间叠加分析、相关性分析和双变量空间自相关分析等方法,探讨景观格局演变对生态系统服务价值的影响.
3.3.1 ESV变化冷、热点与土地利用转移的空间叠加分析
由图 4可知:(1)湾区的ESV变化冷点较集中分布于佛山市南部与中山市北部的接壤地区(c区),此地区为珠江水系的入海口,是水网密集分布区,以草地转水域和草地转建设用地为主,同时部分湿地占地面积减少. (2)肇庆市西部(a区)的冷点分布区的土地利用变化多为水域转草地.广州市南部与东莞市接壤地区的冷点分布区的土地利用变化主要为水域、林地转为草地.珠海市南部冷点分布区的围填海工程导致少量耕地转为建设用地和部分水域转为草地. (3)湾区的ESV变化热点分布较分散,主要分布在肇庆市、江门市与佛山市的接壤地区以及香港特别行政区、深圳市和惠州市的沿海等地.肇庆市内(b区)的热点分布区的土地利用变化多为林地转为湿地或草地,同时在肇庆市西部(a区)、南部等地的土地利用变化多为耕地转草地和草地转水域. (4)江门市北部与佛山市接壤的热点分布区(c区)可能由于近几年的河道变迁,其土地利用变化多为草地与水域互转及部分草地转为湿地.经多年的围填海工程,江门市南部(f区)的热点区域内部分沿海水域转为草地、水田和少量湿地,而上、下川岛的土地利用变化较复杂,以草地转林地和草地转水域为主.澳门特别行政区北部的热点区域内部分草地转为湿地,东部有少量水域转为湿地. (5)香港特别行政区(d区)的热点分布区内的土地利用变化比较复杂,主要呈现为大面积的草地减少.其中,新界东北部山地以草地转为水域和湿地面积增加为主,而香港岛的土地利用变化则以草地转为湿地以及建设用地增多为主.深圳市东部和惠州市南部沿海(e区)的热点分布区的土地利用变化主要为草地转为水域或湿地,以及部分地区的草地转为林地.
3.3.2 ESV与景观指数的相关性分析
由表 5可知:(1)湾区的ESV与AREA_MN、FRAC_AM、COHESION、AI在95%的置信程度下显著正相关,与DIVISION显著负相关,与PD不相关,表明湾区的生态系统服务价值对景观格局的变化有一定敏感性,且对AREA_MN和DIVISION的敏感性程度较高,说明景观类型越丰富、分割程度越低,越有利于提升景观整体的生态系统服务价值. (2)湾区的耕地、草地、水域、建设用地的ESV与AREA_MN、FRAC_AM、COHESION、AI显著正相关,耕地和水域的ESV与PD、DIVISION负相关,表明:①湾区的耕地和水域的ESV对景观破碎度、人类活动干扰程度和景观连通度、聚集度等方面敏感度较高,因此,提高草地景观的连通度和聚集度有利于提高草地的生态系统服务价值. ②建设用地的ESV对斑块密度、人为干扰和景观连通度指数均较敏感.湾区经济在20年间的快速发展推进了城镇基础设施和公共设施的建设,城市景观呈中心包围状密集分布,且公路的建设增加了景观连通度,在此景观影响下的ESV的变化与相关性分析结论一致. (3)林地和湿地与PD、AREA_MN、AI正相关,林地与COHESION、DIVISION负相关.林地的ESV对斑块密度和斑块在景观中的分割程度较敏感,同时与景观连通度负相关. 20年间林地面积大幅度减少,且经济林的大面积分区规划导致景观分割程度进一步增加,一定程度上不利于物种群落的扩散与流动.
表 5 各地类ESV与各景观指数的相关性指数Table 5. The correlation index of ESV and landscape pattern index of each land use type各地类ESV PD AREA_MN FRAC_AM COHESION DIVISION AI 耕地 -0.984** 0.986** 0.977** 0.991** -0.985** 0.997** 林地 0.921* 0.852 -0.874 -0.953* -0.984** 0.857 草地 -0.529 0.998** 0.998** 0.999** — 0.991** 水域 -0.957* 0.973** 0.960** 0.972** -0.957* 0.981** 湿地 0.949* 0.565 0.805 0.889* — 0.907* 建设用地 0.920* 0.922** 0.998** 0.990** -0.944* 0.910* 湾区ESV总值 -0.089 0.907** 0.774** 0.645** -0.929** 0.780** 注:*表示相关系数在0.05水平上显著(两侧检验);**表示相关系数在0.01水平上显著(两侧检验);由于至少1个变量是常数,因此无法计算草地和湿地的DIVISION值. 而湿地的ESV对斑块密度、结合度和聚集程度较敏感,与其他指数的相关性较低,说明沿海地区红树林滩涂岸带的防护和生态修复工作,对湿地资源的增加起到了很大的推动作用,而增加湿地景观的物理连通度和聚集度也可有效地提高其生态系统服务价值.
3.3.3 ESV强度与土地利用程度综合指数的空间自相关分析
由表 6、图 5可知:(1)湾区ESV强度与土地利用程度综合指数的全局Moran's I指数均为负数,但其绝对值均趋近于零,表示两者间不存在显著的空间相关关系. (2)“高—高”集聚类分布变化较显著,1996年多集中分布于广州市西部、佛山市与广州市的接壤地区以及中山市北部等地,至2015年呈分散状分布于佛山市、中山市和东莞市北部一带,斑块数占比则呈现先减少后增加的趋势,整体相对增加. “高—高”集聚类的格网走势与水系分布相似,根据土地利用程度综合指数计算方法可知,当格网斑块由水域或湿地与建设用地混合组成时,斑块即可能出现生态系统服务价值高且土地利用程度高的情况. 2000—2005年间,越秀区、天河区的“高—高”集聚区大规模减少并转为“低—高”集聚区,广州市经济中心由天河北并行发展到珠江新城一带,而经济集聚区的快速发展势必造成城镇居住、交通和公共设施需求的增加,从而驱动周围土地利用的剧烈变化,大规模水域和湿地等自然资源被开发填埋,而在2005—2015年间随着城市绿色可持续发展的推进,资源侵占情况得到逐步缓解并逐年优化. (3)湾区“高—低”集聚类呈条状分布于珠海市、广州市和香港特别行政区的南部等地,多出现于沿海湿地以及内陆的河流湖泊等区域,整体斑块数量占比稳定增加. (4)湾区“低—低”集聚类分布较为突出,主要分布于湾区西北部的肇庆市山区以及湾区东北部地区,在江门市西部、香港特别行政区等南部沿海地区也有分散分布,多出现于林地和草地的混合覆被地区,20年间斑块占比持续增加. (5)湾区“低—高”集聚类分布较广泛,在湾区中部、南部和东南部都有大面积分布. 1996年主要位于广州市南部、江门市中部、佛山市、东莞市北部和惠州市南部等地. 20年间,该集聚类在江门市的分布逐渐减少,而在广佛接壤处以及东莞市、深圳市等地集聚,多为耕地和建设用地的覆被地区,总体斑块数大幅度减少.
表 6 1996—2015年粤港澳大湾区各集聚类型斑块占比表Table 6. The proportion of plaques of each cluster type in Guangdong-Hong Kong-Macao Greater Bay Area from 1996 to 2015年份 各集聚类型斑块占比/% 全局Moran'I 不显著相关 高—高 低—低 低—高 高—低 1996 64.77 3.60 8.33 20.62 2.67 -0.134 2000 64.03 3.59 8.87 20.77 2.74 -0.138 2005 63.81 3.75 10.49 19.09 2.85 -0.126 2010 63.35 4.10 11.22 18.47 2.86 -0.120 2015 62.97 4.21 11.53 18.43 2.87 -0.126 4. 结论与讨论
本研究系统探讨了1996—2015年粤港澳大湾区景观格局的动态变化和生态系统服务价值的空间演变规律,从土地利用转移矩阵、景观指数和土地利用程度综合指数3个角度探讨湾区生态系统服务价值对景观格局演变的响应关系,主要结论如下:
(1) 1996—2015年,耕地、林地为湾区主要的景观类型,其占地面积均有所减少;湿地面积呈缓慢的良性增加状态;湾区腹部的建设用地呈逐年扩张趋势,20年间从广佛地区扩张到广佛深地区以及东莞市和中山市等地.
(2) 湾区的ESV在20年间呈持续上升趋势,2005—2010年间的增加速率最高. ESV高值区主要位于湾区腹地的广佛地区和中山市北部,该地区水网密集,且水系和湿地资源丰富;ESV低值区广泛分布于湾区的西部和惠州市东部地区,其中建设用地和湿地为湾区ESV增长的主要贡献力.
(3) 湾区的ESV变化的冷热点分布区内土地利用转移规律性较强.热点分布区主要位于湾区西北部的肇庆市和南部的香港特别行政区、深圳市等沿海地区,其土地利用变化多为草地转为湿地、水域和林地,而冷点分布区主要位于佛山市南部与中山市北部的经济较发达地区,其土地利用变化多为草地转建设用地和湿地减少.
(4) 湾区ESV对AREA_MN和DIVISION的敏感性程度较高,说明景观类型越丰富、分割程度越低,越有利于提升景观整体的生态系统服务价值.而不同土地利用类型对不同景观指数的敏感性不同,可通过增强自然资源的景观斑块丰富度和聚集度、降低景观分割程度来促进湾区的ESV增加.
(5) 1996—2015年,湾区的ESV强度和土地利用程度综合指数不存在显著的空间相关性. 2000—2005年,湾区腹部大规模“高—高”集聚斑块转为“低—高”集聚斑块,表明经济的快速发展加重了对区域内水域和湿地资源的破坏;2005—2015年,环境破坏情况逐步改善,同时“高—低”集聚斑块占比呈缓慢增加状态,说明在可持续发展的政策推动下,城市发展兼顾了生态环境的保护,加快了城市绿色发展进程.
日益加重的景观格局变化对生态系统服务价值造成显著影响,合理配置湾区资源对维护生态平衡、保护生态系统具有重要意义:(1)在粤港澳城市群追求经济快速发展的前期,湾区腹地和南部地区的建设用地快速扩张,在珠三角地区形成包围趋势,大片耕地、草地资源被逐年占用,内陆河流和湿地在城镇建设中被破坏、填埋,大量生态林地被砍伐用作耕地或建设用地,开发和保护林地矛盾突出.因此,广东省在2003年颁布了《广东省林地保护利用总体规划(2001—2010年)》[40],以规范各地生态林地与经济林的面积比例,在保障森林资源可持续发展的同时,有效提高资源利用效率.同时,湾区的滨海湿地滩涂在《广东省湿地保护条例》[41]的法律保护下得到了有效的修复重建.因此,在湾区现代化建设高速发展的同时,也应加强对自然资源的监测和保护力度,以免因人类的过度干预而造成大规模的景观破碎和生态失衡. (2)研究发现湾区的ESV变化冷点多聚集于湾区腹地的经济较发达地区,说明高强度的人类活动会在一定程度上干扰地区生态系统功能或加速生态系统服务的退化. (3)本文结果表明引起湾区的ESV剧烈变化的土地利用转移具有一定规律性:热点区的土地利用变化多为草地转为湿地、水域和林地等,而冷点区的土地利用变化多为建设用地增加和湿地减少.经过分析发现湾区的景观格局变化受土地规划政策影响较大,而针对区域土地利用差异性和经济发展的不同步性,需要采取分而治之的优化策略,构建生态安全条件下的景观格局.
生态系统服务是多种因子共同作用的结果,而多因子的耦合机制以及确定各因子的贡献程度仍然是一个具有挑战性的难题,本文着重研究其自然环境和景观格局背景下的生态系统服务价值的变化差异,人文要素考虑不够全面,今后应综合土地利用程度、景观指数和人类福祉指标等自然人文要素共同探讨湾区生态系统服务波动的影响机理和响应.同时,由于生态系统的复杂性和动态性,根据全球尺度下的当量因子表和使用一级地类的参数所计算的价值具有一定局限性,如能提高土地利用数据精度和增加二级地类的价值参数, 则将得到更加精确的研究结果.
-
表 1 景观指数及其内涵
Table 1 The landscape pattern index and its implications
指数类别 景观指数 涵义描述 面积-边缘 斑块密度 描述某一斑块类型在景观中的分布密度 平均斑块面积 描述景观中某一种斑块的平均面积 形状 面积加权平均斑块分形维数 描述某一斑块类型形状的复杂性,即人类活动干扰程度 聚集度 斑块结合度指数 描述在类型水平上度量斑块类型的物理连接度 景观分割度指数 描述某一斑块类型在景观中的分割程度 斑块聚集度指数 描述斑块类型景观中不同斑块个体分布的聚集程度 表 2 研究区土地利用类型的生态系统服务价值系数
Table 2 The ecosystem service value coefficients of land use type
元·hm-2·a-1 土地利用类型 生态系统服务价值系数 耕地 41 753 林地 40 365 草地 31 245 水域 93 840 湿地 1 051 305 建设用地 49 958 未利用地 0 表 3 1996—2015年粤港澳大湾区土地利用面积变化表
Table 3 The land use area change of the Guangdong-Hong Kong-Macao Greater Bay Area from 1996 to 2015
景观类型 1996年 2000年 2005年 2010年 2015年 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 总面积/km2 占比/% 耕地 22 679.08 40.72 22 626.06 40.62 21 610.17 38.80 20 861.11 37.45 20 526.60 36.85 林地 21 407.27 38.43 21 353.81 38.34 21 148.14 37.97 21 108.55 37.90 21 051.75 37.80 草地 5 411.79 9.72 5 189.26 9.32 4 604.12 8.27 4 317.84 7.75 4 260.86 7.65 水域 3 325.28 5.97 3 320.67 5.96 3 228.71 5.80 3 113.97 5.59 3 055.60 5.49 湿地 307.76 0.55 314.81 0.57 344.80 0.62 392.63 0.70 399.73 0.72 建设用地 2 560.20 4.60 2 887.21 5.18 4 758.59 8.54 5 901.40 10.60 6 402.02 11.49 未利用地 6.59 0.01 6.15 0.01 3.42 0.01 2.45 0.00 1.40 0.00 合计 55 697.97 100.00 55 697.97 100.00 55 697.95 100.00 55 697.95 100.00 55 697.96 100.00 表 4 粤港澳大湾区各地类的ESV以及贡献率
Table 4 The rate and change of ESV contribution of different types of land use in the Guangdong-Hong Kong-Macao Greater Bay Area
景观类型 1996年 2000年 2005年 2010年 2015年 ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%ESV/
亿元贡献率/
%耕地 946.92 34.51 944.71 34.28 902.29 32.19 871.01 30.48 857.05 29.90 林地 864.10 31.50 861.95 31.28 853.64 30.45 852.05 29.81 849.75 29.64 草地 169.09 6.16 162.14 5.88 143.86 5.13 134.91 4.72 133.13 4.64 水域 312.04 11.37 311.61 11.31 302.98 10.81 292.22 10.23 286.74 10.00 湿地 323.55 11.79 330.96 12.01 362.49 12.93 412.78 14.44 420.24 14.66 建设用地 127.90 4.66 144.24 5.23 237.73 8.48 294.82 10.32 319.83 11.16 未利用地 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 合计 2 743.61 100.00 2 755.60 100.00 2 802.99 100.00 2 857.79 100.00 2 866.74 100.00 表 5 各地类ESV与各景观指数的相关性指数
Table 5 The correlation index of ESV and landscape pattern index of each land use type
各地类ESV PD AREA_MN FRAC_AM COHESION DIVISION AI 耕地 -0.984** 0.986** 0.977** 0.991** -0.985** 0.997** 林地 0.921* 0.852 -0.874 -0.953* -0.984** 0.857 草地 -0.529 0.998** 0.998** 0.999** — 0.991** 水域 -0.957* 0.973** 0.960** 0.972** -0.957* 0.981** 湿地 0.949* 0.565 0.805 0.889* — 0.907* 建设用地 0.920* 0.922** 0.998** 0.990** -0.944* 0.910* 湾区ESV总值 -0.089 0.907** 0.774** 0.645** -0.929** 0.780** 注:*表示相关系数在0.05水平上显著(两侧检验);**表示相关系数在0.01水平上显著(两侧检验);由于至少1个变量是常数,因此无法计算草地和湿地的DIVISION值. 表 6 1996—2015年粤港澳大湾区各集聚类型斑块占比表
Table 6 The proportion of plaques of each cluster type in Guangdong-Hong Kong-Macao Greater Bay Area from 1996 to 2015
年份 各集聚类型斑块占比/% 全局Moran'I 不显著相关 高—高 低—低 低—高 高—低 1996 64.77 3.60 8.33 20.62 2.67 -0.134 2000 64.03 3.59 8.87 20.77 2.74 -0.138 2005 63.81 3.75 10.49 19.09 2.85 -0.126 2010 63.35 4.10 11.22 18.47 2.86 -0.120 2015 62.97 4.21 11.53 18.43 2.87 -0.126 -
[1] COSTANZA R, ARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 387:253-260. http://www.sciencedirect.com/science/article/pii/S0921800998000202
[2] COSTANZA R, DE GROOT R, SUTTON P, et al. Changes in the global value of ecosystem services[J]. Global Environmental Change, 2014, 26(1):152-158. http://www.researchgate.net/publication/262489570_Changes_in_the_global_value_of_ecosystem_services/download
[3] 谢高地, 张彩霞, 张雷明, 等.基于单位面积价值当量因子的生态系统服务价值化方法改进[J].自然资源学报, 2015, 30(8):1243-1254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201508001 XIE G D, ZHANG C X, ZHANG L M. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8):1243-1254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201508001
[4] DAILY G C, SODERQUIST T, ANIYAR S, et al. The value of nature and the nature of value[J]. Science, 2000, 289:395-396. http://europepmc.org/abstract/MED/10939949
[5] SUTTON P C, COSTANZA R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation[J]. Ecological Economics, 2002, 41(3):509-527. doi: 10.1016/S0921-8009(02)00097-6
[6] 傅伯杰, 张立伟.土地利用变化与生态系统服务:概念、方法与进展[J].地理科学进展, 2014, 33(4):441-446. http://www.cnki.com.cn/Article/CJFDTotal-DLKJ201404001.htm FU B J, ZHANG L W. Land-use change and ecosystem services:concepts, methods and progress[J]. Progress in Geography, 2014, 33(4):441-446. http://www.cnki.com.cn/Article/CJFDTotal-DLKJ201404001.htm
[7] ALCAMO J, BENNETT E M. Ecosystems and human well-being: a framework for assessment[M]. Washington, DC: Island Press, 2003.
[8] 刘永超, 李加林, 袁麒翔, 等.中美港湾流域生态系统服务价值变化比较——以浙江象山港与佛罗里达坦帕湾为例[J].地理研究, 2019, 38(2):357-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201902015 LIU Y C, LI J L, YUAN Q X, et al. A comparative study on the changes of ecosystem services values in the bay basin between China and the USA:a case study on Xiang-shangang Bay basin, Zhejiang and Tampa Bay basin, Flo-rida[J]. Geographical Research, 2019, 38(2):357-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201902015
[9] 谢高地, 鲁春霞, 冷允法, 等.青藏高原生态资产的价值评估[J].自然资源学报, 2003(2):189-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200302010 XIE G D, LU C X, LENG Y F, et al. Ecological assets va-luation of the Tibetan Plateau[J]. Journal of Natural Resources, 2003(2):189-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb200302010
[10] 段瑞娟, 郝晋珉, 张洁瑕.北京区位土地利用与生态服务价值变化研究[J].农业工程学报, 2006, 22(9):21-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200609005 DUAN R J, HAO J M, ZHANG J X. Land utilization and changes on eco-service value in different locations in Beijing[J]. Transactions of the CSAE, 2006, 22(9):21-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200609005
[11] 毕晓丽, 葛剑平.基于IGBP土地覆盖类型的中国陆地生态系统服务功能价值评估[J].山地学报, 2004, 22(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200401009 BI X L, GE J P. Evaluating ecosystem service valuation in China based on the IGBP land cover datasets[J]. Journal of Mountain Research, 2004, 22(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200401009
[12] 王航, 秦奋, 朱筠, 等.土地利用及景观格局演变对生态系统服务价值的影响[J].生态学报, 2017, 37(4):1286-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201704024 WANG H, QIN F, ZHU J, et al. The effects of land use structure and landscape pattern change on ecosystem ser-vice values[J]. Acta Ecologica Sinica, 2017, 37(4):1286-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201704024
[13] 徐丽芬, 许学工, 罗涛, 等.基于土地利用的生态系统服务价值当量修订方法——以渤海湾沿岸为例[J].地理研究, 2012, 31(10):1775-1784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201210004 XU L F, XU X G, LUO T, et al. Services based on land use:a case study of Bohai Rim[J]. Geographical Research, 2012, 31(10):1775-1784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201210004
[14] 黄木易, 岳文泽, 方斌, 等. 1970-2015年大别山区生态服务价值尺度响应特征及地理探测机制[J].地理学报, 2019, 74(9):1904-1920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201909016 HUANG M Y, YUE W Z, FANG B, et al. Scale response characteristics and geographic exploration mechanism of spatial differentiation of ecosystem service values in Dabie Mountain area, central China from 1970 to 2015[J]. Acta Geographica Sinica, 2019, 74(9):1904-1920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201909016
[15] 童晨, 童亿勤, 李加林, 等.舟山群岛景观格局变化对生态系统服务价值的影响[J].海洋学研究, 2019, 37(1):40-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201901006 TONG C, TONG Y Q, LI J L, et al. The effects of landscape pattern change on ecosystem service values in the Zhoushan Archipelago[J]. Journal of Marine Sciences, 2019, 37(1):40-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201901006
[16] MOONEY H A, DURAIAPPAH A, LARIGAUDERIE A. Evolution of natural and social science interactions in global change research programs[J]. Proceedings of the National Academy of Sciences, 2013, 110(S1):3665-3672.
[17] 刘纪远, 宁佳, 匡文慧, 等. 2010-2015年中国土地利用变化的时空格局与新特征[J].地理学报, 2018, 73(5):789-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201805001 LIU J Y, NING J, KUANG W H, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015[J]. Acta Geographica Sinica, 2018, 73(5):789-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201805001
[18] SANTOS-MARTIN F, ZORRILLA-MIRAS P, PALOMO I, et al. Protecting nature is necessary but not sufficient for conserving ecosystem services:a comprehensive asse-ssment along a gradient of land-use intensity in Spain[J]. Ecosystem Services, 2019, 35:43-51. doi: 10.1016/j.ecoser.2018.11.006
[19] 邹月, 周忠学.西安市景观格局演变对生态系统服务价值的影响[J].应用生态学报, 2017, 28(8):2629-2639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201708027 ZOU Y, ZHOU Z X. Impact of landscape pattern change on ecosystem service value of Xi'an City, China[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2629-2639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201708027
[20] 虎陈霞, 郭旭东, 连纲, 等.长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J].长江流域资源与环境, 2017, 26(3):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=671771184 HU C X, GUO X D, LIAN G, et al. Effects of land use change on ecosystem service value in rapid urbanization areas in Yangtze River Delta:a case study of Jiaxing City[J]. Resources and Environment in the Yangtze Basin, 2017, 26(3):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=671771184
[21] GRIZZETTI B, LIQUETE C, PISTOCCHI A, et al. Relationship between ecological condition and ecosystem ser-vices in European rivers, lakes and coastal waters[J]. Science of the Total Environment, 2019, 671:452-465. doi: 10.1016/j.scitotenv.2019.03.155
[22] SHENG W, ZHEN L, XIE G, et al. Determining eco-compensation standards based on the ecosystem services value of the mountain ecological forests in Beijing, China[J]. Ecosystem Services, 2017, 26:422-430. http://www.sciencedirect.com/science/article/pii/S2212041617302917
[23] 韩增林, 赵文祯, 闫晓露, 等.基于生态系统服务价值损益的生态安全格局演变分析——以辽宁沿海瓦房店市为例[J].生态学报, 2019, 39(22):8370-8382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201922016 HAN Z L, ZHAO W Z, YAN X L, et al. The evolution of ecological security pattern based on the profit and loss analysis of ecosystem services:taking Wafangdian County as a case[J]. Acta Ecologica Sinica, 2019, 39(22):8370-8382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201922016
[24] 王金凤, 刘方, 白晓永, 等.西南地区生态系统服务价值时空演变及模拟预测[J].生态学报, 2019, 39(19):7057-7066. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201919011 WANG J F, LIU F, BAI X Y, et al. The spatial and temporal evolution and simulation forecast of ecosystem ser-vice values in southwest China[J]. Acta Ecologica Sinica, 2019, 39(19):7057-7066. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201919011
[25] 张彬.探寻新历史使命下粤港澳大湾区生态环境政策着力点[N].中国环境报, 2019-03-26(003). [26] 周小平, 冯宇晴, 罗维, 等.两种生态系统服务价值评估方法之比较——以四川省金堂县三星镇土地整治工程为例[J].生态学报, 2020, 40(5):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=STXB202005031 ZHOU X P, FENG Y Q, LUO W, et al. Comparing two ecosystem service evaluation methods of the ecological be-nefits from a land consolidation project at a township le-vel:a case study in Sanxing Town, Jintang County of Sichuan Province[J]. Acta Ecologica Sinica, 2020, 40(5):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=STXB202005031
[27] European Space Agency. Global land cover data[EB/OL]. (2015-09-14)[2020-05-31]. http://maps.elie.ucl.ac.be/CCI/viewer/.
[28] 国土资源部.土地利用现状分类标准: GB/T21010-2007[S].北京: 中国标准出版社, 2007. [29] 中国科学院计算机网络信息中心地理空间数据云平台. GDEMV数字高程数据[EB/OL]. (2009-06-29)[2020-05-31]. http://www.gscloud.cn. [30] 乔伟峰, 盛业华, 方斌, 等.基于转移矩阵的高度城市化区域土地利用演变信息挖掘——以江苏省苏州市为例[J].地理研究, 2013, 32(8):1497-1507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201308013 QIAO W F, SHENG Y H, FANG B, et al. Land use change information mining in highly urbanized area based on transfer matrix:a case study of Suzhou, Jiangsu Pro-vince[J]. Geographical Research, 2013, 32(8):1497-1507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201308013
[31] 林炳青, 陈兴伟, 陈莹, 等.流域景观格局变化对洪枯径流影响的SWAT模型模拟分析[J].生态学报, 2014, 34(7):1772-1780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201407017 LIN B Q, CHEN X W, CHEN Y, et al. Simulations and analysis on the effects of landscape pattern change on flood and low flow based on SWAT model[J]. Acta Ecologica Sinica, 2014, 34(7):1772-1780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201407017
[32] 李青圃, 张正栋, 万露文, 等.基于景观生态风险评价的宁江流域景观格局优化[J].地理学报, 2019, 74(7):1420-1437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201907012 LI Q P, ZHANG Z D, WAN L W et al. Landscape pattern optimization in Ningjiang River Basin based on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2019, 74(7):1420-1437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201907012
[33] 王丽群, 张志强, 李格, 等.北京边缘地区景观格局变化及对生态系统服务的影响评价——以牛栏山-马坡镇为例[J].生态学报, 2018, 38(3):750-759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201803002 WANG L Q, ZHANG Z Q, LI G, et al. Landscape pattern change in Beijing fringe area and its impact on the ecosystem services:a case study in Niulanshan-Mapo town[J]. Acta Ecologica Sinica, 2018, 38(3):750-759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201803002
[34] 徐炫清, 陈裕婵, 李青圃, 等.五华河流域景观格局演变对径流泥沙的影响[J].水土保持研究, 2018, 25(1):231-236;242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201801039 XU X Q, CHEN Y C, LI Q P, et al. Effects of landscape patterns on runoff and sediment in Wuhua River Basin[J]. Research of Soil and Water Conservation, 2018, 25(1):231-236;242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201801039
[35] 庄大方, 刘纪远.中国土地利用程度的区域分异模型研究[J].自然资源学报, 1997, 12(2):10-16. http://www.cnki.com.cn/Article/CJFDTotal-ZRZX702.001.htm ZHUANG D F, LIU J Y. Study on the model of regional differentiation of land use degree in China[J]. Journal of Natural Resources, 1997, 12(2):10-16. http://www.cnki.com.cn/Article/CJFDTotal-ZRZX702.001.htm
[36] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3):189-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1538-4632.1992.tb00261.x
[37] 姚小薇, 曾杰, 李旺君.武汉城市圈城镇化与土地生态系统服务价值空间相关特征[J].农业工程学报, 2015, 31(9):249-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201509038 YAO X W, ZENG J, LI W J. Spatial correlation characte-ristics of urbanization and land ecosystem service value in Wuhan Urban Agglomeration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9):249-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201509038
[38] ANSELIN L. Local indicators of spatial association—LISA[J]. Geographical Analysis, 1995, 27(2):93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x/full
[39] 雷金睿, 陈宗铸, 吴庭天, 等.海南岛东北部土地利用与生态系统服务价值空间自相关格局分析[J].生态学报, 2019, 39(7):2366-2377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201907010 LEI J R, CHEN Z Z, WU T T, et al. Spatial autocorrelation pattern analysis of land use and the value of ecosystem services in northeast Hainan island[J]. Acta Ecologica Sinica, 2019, 39(7):2366-2377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201907010
[40] 广东省人民政府办公厅.印发《广东省林地保护利用总体规划(2001—2010年)》的通知[Z/OL]. (2003-03-17)[2020-05-31]. http://www.gd.gov.cn/gkmlpt/content/0/137/post_137281.html#7. [41] 广东省第十届人民代表大会常务委员会.广东省湿地保护条例[Z/OL]. (2006-06-01)[2020-05-31]. http://www.npc.gov.cn/zgrdw/npc/xinwen/dfrd/guangdong/2006-09/04/content_352204.htm. -
期刊类型引用(16)
1. 方斌,邵羽凡,孙新松,王子源,杨欣蕾. 粮食主产区农田食物供给服务与景观格局空间协调性研究——以江苏省连云港市为例. 长江流域资源与环境. 2025(03): 668-681 . 百度学术
2. 王婷,顾嘉楠,张春英. 基于CNKI文献计量分析的近二十年国内景观格局演变研究. 福建建筑. 2025(02): 20-25 . 百度学术
3. 张亚丽,陈亮,田义超,林俊良,黄柱军,杨芸珍,张强,陶进. 模拟多情景下桂西南峰丛洼地流域土地利用变化及生态系统服务价值的空间响应. 环境科学. 2024(12): 6935-6948 . 百度学术
4. 郭健斌,刘天平. 基于土地利用的尼洋河流域生态系统服务价值的时空变化及其驱动因素. 华南师范大学学报(自然科学版). 2024(05): 64-76 . 百度学术
5. 谢卓洪,刘利杰,莫燕卿,陈楚民,马振环,刘萍. 珠三角森林城市群区域性河流水系森林景观格局评价与优化. 林业资源管理. 2023(02): 118-125 . 百度学术
6. 文嫱,徐颂军,邱彭华,钟尊倩. 城镇化背景下海口湿地近30年变化分析. 华南师范大学学报(自然科学版). 2023(03): 74-86 . 百度学术
7. 罗继文,周禧,黄亚南,刘叶,张争胜,曾丽璇. 南沙区土地利用变化对生态系统服务价值的影响. 华南师范大学学报(自然科学版). 2022(03): 100-110 . 百度学术
8. 魏嘉馨,干晓宇,黄莹,郭仲薇. 成都市城市绿地景观与生态系统服务的关系. 西北林学院学报. 2022(06): 232-241 . 百度学术
9. 田翠翠,朱忆秋,褚艳玲,徐婷婷,陈龙. 粤港澳大湾区景观格局时空变化及其驱动力研究. 环境科学与管理. 2021(04): 98-103 . 百度学术
10. 唐明坤,许戈,冯涌,刘亮,周大松,陈治兴,杨静,王恋,王新. 四川岷山山系大熊猫栖息地景观格局特征及保护策略研究. 四川林业科技. 2021(04): 5-11 . 百度学术
11. 王小军,张楚然,廖倚凌,刘光旭,王炳香,余剑. 1980-2018年粤港澳大湾区人为干扰度的时空特征. 水土保持通报. 2021(03): 333-341 . 百度学术
12. 纪树志. 极旱荒漠区湿地植被动态变化监测——以甘肃敦煌阳关国家级自然保护区为例. 中国农学通报. 2021(26): 105-109 . 百度学术
13. 张洪,方文杰,陶柳延. 长三角中心城市社会经济-生态环境-旅游产业协调发展时空演化及影响因素——基于面板数据的空间计量分析. 华南师范大学学报(自然科学版). 2021(05): 84-91 . 百度学术
14. 柳迪子,杜守帅,王晨旭. 旅游型乡村景观格局变化及生态系统服务价值响应——以江苏省无锡市太湖国家旅游度假区为例. 水土保持通报. 2021(05): 264-275+286 . 百度学术
15. 胡喻璇,陈德超,范金鼎,施祝凯. 环太湖区域景观格局演变及其生态系统服务影响. 城市问题. 2021(04): 95-103 . 百度学术
16. 吴健生,易腾云,王晗. 2000—2030年深港景观格局演变时空分异与趋势对比分析. 生态学报. 2021(22): 8718-8731 . 百度学术
其他类型引用(15)