董事会成员背景多元化对企业创新产出的影响——基于内部控制有效性调节效应的分析

朱渝梅, 李日华, 刘伟

朱渝梅, 李日华, 刘伟. 董事会成员背景多元化对企业创新产出的影响——基于内部控制有效性调节效应的分析[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 120-128. DOI: 10.6054/j.jscnun.2020070
引用本文: 朱渝梅, 李日华, 刘伟. 董事会成员背景多元化对企业创新产出的影响——基于内部控制有效性调节效应的分析[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 120-128. DOI: 10.6054/j.jscnun.2020070
ZHU Yumei, LI Rihua, LIU Wei. Research on the Influence of Diversified Backgrounds of Board Members on the Innovation Output of Enterprises: An Analysis Based on the Effectiveness of Internal Control[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 120-128. DOI: 10.6054/j.jscnun.2020070
Citation: ZHU Yumei, LI Rihua, LIU Wei. Research on the Influence of Diversified Backgrounds of Board Members on the Innovation Output of Enterprises: An Analysis Based on the Effectiveness of Internal Control[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 120-128. DOI: 10.6054/j.jscnun.2020070

董事会成员背景多元化对企业创新产出的影响——基于内部控制有效性调节效应的分析

基金项目: 

广东省科技计划项目 2013B040400012

详细信息
    通讯作者:

    刘伟,研究员,Email:18665024106@163.com

  • 中图分类号: F230

Research on the Influence of Diversified Backgrounds of Board Members on the Innovation Output of Enterprises: An Analysis Based on the Effectiveness of Internal Control

  • 摘要: 运用理论分析和实证检验相结合的方法,探讨了董事会成员背景多元化与企业创新产出的关系,以及内部控制有效性对二者关系的调节效应.首先,以高阶梯队理论、资源依赖理论和社会认知理论等作为理论基础,分析提出2个研究假设;然后,选取我国2012—2018年A股上市公司的数据为样本,通过建立2个多元线性回归数学模型,运用Pearson变量相关性分析技术和方差膨胀因子检验以及OLS、FE等方法分析后发现:(1)董事会背景多元化在1%的显著性水平上对企业创新具有正向的促进作用;(2)内部控制有效性在1%的显著性水平上对董事会背景多元化与企业创新产出的关系具有正向调节作用,即随着内部控制有效性的提升,董事会背景多元化对企业创新产出的正向影响逐渐增强; (3)在国有控股企业、总经理与董事长两职分离的企业和市场化程度较高地区的企业中,内部控制有效性对董事会背景多元化促进企业创新的正向调节作用更为明显.
    Abstract: This paper combines theoretical analysis with empirical test to explore the relationship between the diversity of board members' backgrounds and the innovation output of enterprises and the moderating effect of the effectiveness of internal control on their relationship. First, on the basis of the upper echelon theory, the resource dependence theory and the social cognition theory, two research hypotheses are put forward. Then the data of China's A-share listed companies from 2012 to 2018 are selected as the sample and two multiple linear regression models are established. The following conclusions are drawn with the method of Pearson, VIF, OLS and FE. First, there is a positive correlation between the background diversity of the board of directors and the output of corporate innovation, with a significant level of 1%. Second, on the significance level of 1%, the effectiveness of internal control has a positive regulating effect on the relationship between the diversity of the background of the board of directors and the innovation output of the enterprise. In other words, with the improvement of the effectiveness of internal control, the positive influence of the diversity of the background of the board of directors on the innovation output of the enterprise gradually increases. Third, in the state-held enterprises, the enterprises where the general manager and the chairman are separated and the enterprises in the areas with a high degree of marketization, the effectiveness of internal control has a stronger positive regulatory effect on the background diversity of the board of directors promoting corporate innovation.
  • 表  1   变量定义表

    Table  1   The table of variable definition

    变量性质 变量名称 变量表示 变量定义
    被解释变量 企业创新 Patent 企业年内申请专利的总数,包括发明专利、实用新型专利和外观设计专利的申请总数
    解释变量 董事会背景多元化 H 用赫芬达尔指数表示,H =1-∑Pi2Pi表示第i种背景的人数占董事会总人数的比例.曾在海外任职为第1种; 曾在海外求学为第2种;国内学习或国内任职为第3种;曾在海外任职和海外求学为第4种
    调节变量 内部控制 ICindex 采用迪博企业风险管理技术有限公司公布的中国上市公司内部控制指数,并除以100予以标准化
    控制变量 公司规模 Lasset 年末公司资产总额的自然对数
    董事会规模 Boardsize 公司董事会的总人数
    营业收入增长率 Growth (本年营业收入-上年营业收入)/上年营业收入×100%
    两职合一 Dual 总经理兼任董事长的取值为1,否则为0
    独立董事比例 Ratio 独立董事人数/董事会总人数
    高管持股比例 Share 年末高管持股数/年末股本总数
    资产负债率 Lev 年末负债总额/年末资产总额
    总资产收益率 Roa 年末净利润/年末资产总额
    企业性质 State 国有控股企业的取值为1,非国有控股企业的取值为0
    市场化进程 Market 根据王小鲁等[16]编制的全国各省、自治区和直辖市的市场化指数,对企业所属区域的市场化指数进行排列,高于平均值的取值为Market=1,否则取值为Market=0
    年度 Year 年度虚拟变量
    行业 Industry 行业虚拟变量
    下载: 导出CSV

    表  2   全体样本主要变量描述性统计

    Table  2   The descriptive statistics of the main variables of the total sample

    变量 平均值 标准差 最小值 最大值
    Patent 71.97 161.34 0 1 176
    H 0.16 0.17 0 0.73
    ICindex 6.48 1.19 0 9.86
    Lasset 22.13 1.22 20.08 26.07
    Boardsize 8.63 1.70 0 18
    Growth 0.19 0.40 -0.42 2.50
    Dual 0.28 0.45 0 1
    Ratio 0.37 0.05 0.33 0.57
    Share 0.08 0.15 0 0.63
    Lev 0.41 0.20 0.05 0.85
    Roa 0.04 0.05 -0.11 0.18
    State 0.35 0.48 0 1
    Market 0.86 0.35 0 1
    下载: 导出CSV

    表  3   Pearson相关分析系数表

    Table  3   The table of Pearson correlation analysis coefficient

    Patent H ICindex Lasset Boardsize Growth Dual Ratio Share Lev Roa State Market
    Patent 1
    H 0.12*** 1
    Icindex 0.11*** 0.04*** 1
    Lasset 0.49*** 0.08*** 0.11*** 1
    Boardsize 0.10*** -0.01 0.02* 0.30*** 1
    Growth -0.02 0.01 0.02** 0.02** -0.01 1
    Dual -0.05*** 0.06*** 0.01 -0.19*** -0.20*** 0.03 1
    Ratio 0.08*** 0.04*** 0.04*** 0.10 -0.46*** -0.01 0.12*** 1
    Share -0.07*** 0.08*** 0.04*** -0.28*** -0.18*** 0.01 0.46*** 0.12*** 1
    Lev 0.22*** -0.06*** -0.09*** 0.54*** 0.19*** 0.02 -0.15*** -0.02** -0.25*** 1
    Roa 0.03*** 0.06*** 0.32*** -0.02* -0.04 0.02 0.05*** -0.02* 0.14*** -0.35*** 1
    State 0.16*** -0.11*** -0.02** 0.40*** 0.30*** 0.01 -0.30*** -0.05*** -0.36*** 0.36*** -0.13*** 1
    Market 0.06*** 0.12*** 0.09*** 0.09*** -0.07*** -0.03*** 0.09*** 0.01 0.11*** -0.11*** 0.09*** -0.19*** 1
    注:***p < 0.01, **p < 0.05, *p < 0.10.
    下载: 导出CSV

    表  4   方差膨胀因子检验

    Table  4   The table of variance expansion factor test

    变量 VIF 1/VIF
    H 1.06 0.95
    Icindex 1.15 0.87
    Lasset 1.83 0.55
    Boardsize 1.52 0.66
    Growth 1.00 1.00
    Dual 1.32 0.76
    Ratio 1.34 0.75
    Share 1.42 0.70
    Lev 1.75 0.57
    Roa 1.32 0.76
    State 1.49 0.67
    Market 1.06 0.94
    Mean VIF 1.33
    下载: 导出CSV

    表  5   董事会背景多元化、内部控制与企业创新的全体样本回归结果

    Table  5   The full sample regression results of background diversity of the board, internal control and corporate innovation

    变量 模型(1) 模型(2)
    OLS FE OLS FE
    H 62.64*** 64.83*** -92.83** -97.68**
    (8.60) (8.74) (0.10) (46.95)
    Icindex 1.98 2.07
    (1.65) (1.68)
    H*Icindex 23.95*** 25.02***
    (6.95) (7.08)
    Lasset 70.29*** 66.20*** 69.17*** 65.09***
    (1.62) (1.61) (1.64) (1.63)
    Boardsize 0.31 -0.95 0.30 -0.97
    (1.03) (1.05) (1.03) (1.05)
    Growth -3.44 -6.16* -4.31 -7.08*
    (3.66) (3.72) (3.66) (3.72)
    Dual 1.369 2.89 1.33 2.82
    (3.67) (3.75) (3.67) (3.74)
    Ratio 163.12*** 161.41*** 156.26*** 154.23***
    (30.64) (31.25) (30.63) (35.08)
    Share 49.13*** 45.45*** 48.03*** 44.48***
    (11.64) (11.86) (11.62) (11.84)
    Lev -18.57* -19.66** -17.11* -18.30*
    (9.98) (9.92) (9.99) (9.92)
    Roa 88.63** 97.25*** 41.57 47.86
    (35.05) (35.71) (36.37) (37.08)
    State 11.57*** 5.18 11.16*** 4.81
    (3.62) (3.66) (3.62) (3.66)
    Market 47.13*** 43.94*** 45.78*** 42.59***
    (4.24) (4.24) (4.24) (4.27)
    Industry & Year 控制 控制 控制 控制
    常数项 -1 625.54***
    (36.50)
    -1 494.85***
    (34.15)
    -1 610.42***
    (37.29)
    -1 477.99***
    (35.07)
    样本观测数 9 628 9 628 9 628 9 628
    调整R2 0.276 3 0.300 0 0.303 8 0.304 2
    注:括号内数字为标准误;***p < 0.01, **p < 0.05, *p < 0.10;表 6表 7同.
    下载: 导出CSV

    表  6   稳健性检验的回归结果

    Table  6   The regression results of the robustness test

    变量 模型(1) 模型(2)
    RD RD1 Patent RD RD1 Patent
    H 17.07*** 108.67*** 60.80*** 91.09*** -255.33* -111.02**
    (6.48) (28.52) (10.19) (-2.99) (152.63) (55.89)
    Icindex 8.51*** 0.32 3.79**
    (3.25) (5.46) (1.92)
    H*Icindex 58.97*** 56.02** 26.63***
    (13.74) (23.03) (8.51)
    Lasset 190.51*** 130.26*** 76.51*** 187.08*** 128.41*** 75.20***
    (3.22) (5.38) (1.89) (3.24) (5.44) (1.89)
    Boardsize 4.69** 9.85*** -0.88 4.67** 9.82*** -0.90
    (2.04) (3.42) (1.21) (2.04) (3.42) (1.21)
    Growth -28.92*** -11.22 -0.16 -31.67*** -12.47 -0.14
    (7.26) (12.13) (0.21) (7.25) (12.15) (0.21)
    Dual -1.19 32.50*** 3.97 -1.32 32.42*** 3.67
    (7.28) (12.17) (4.27) (7.26) (12.16) (4.27)
    Ratio 509.39*** 339.20*** 174.73*** 489.02*** 327.19*** 169.48***
    (60.77) (101.54) (34.27) (60.63) (101.59) (34.21)
    Share 79.14*** 25.34 34.45*** 76.05*** 23.24 34.54***
    (23.09) (38.58) (11.66) (23.02) (38.57) (11.64)
    Lev -116.85*** -77.09** -25.34** -111.63*** -75.56** -21.78**
    (19.81) (33.10) (11.43) (19.78) (33.15) (11.44)
    Roa 99.77 36.02 102.94*** -43.86 -41.24 71.12**
    (69.51) (116.14) (34.05) (72.00) (120.64) (34.40)
    State 20.52*** -11.94 8.34** 19.50*** -12.89 8.07*
    (7.18) (12.00) (4.26) (7.16) (12.01) (4.26)
    Market 77.39*** 83.52*** 49.74*** 73.27*** 81.30*** 47.61***
    (8.40) (14.04) (5.04) (8.39) (14.06) (5.05)
    Industry & Year 控制 控制 控制 控制 控制 控制
    常数项 -4 391.60*** -3 089.78*** -1 748.75*** -4 361.41*** -3 046.13*** -1 741.43***
    (72.39) (120.96) (42.38) (73.83) (123.70) (43.34)
    样本观测数 9 628 9 628 7 402 9 628 9 628 7 402
    调整R2 0.269 1 0.301 4 0.298 8 0.272 0 0.303 5 0.302 2
    下载: 导出CSV

    表  7   分组检验的回归结果

    Table  7   The results of group regression

    变量 控股企业 两职情况 市场化程度
    国有 非国有 分离 合一 较高 较低
    H -209.03** -16.15 -100.98* -71.66 -78.69 -135.10*
    (91.70) (48.04) (54.67) (85.10) (52.07) (79.05)
    Icindex 1.10 0.06 3.05 -2.98 2.74 0.49
    (2.85) (1.94) (1.92) (3.29) (1.96) (2.29)
    H*Icindex 42.84*** 10.32 25.12*** 20.44 21.99*** 20.84*
    (13.64) (7.29) (8.25) (12.85) (7.83) (12.31)
    Lasset 86.62*** 49.17*** 69.94*** 67.322*** 74.08*** 38.88***
    (3.14) (1.80) (1.96) (3.04) (1.85) (2.87)
    Boardsize -2.16 2.35** 0.24 1.25 1.92* -4.78***
    (1.84) (1.18) (1.21) (2.01) (1.16) (1.79)
    Growth -1.94 -4.950 -2.09 -12.724** -7.462* 11.30**
    (8.71) (3.34) (4.48) (6.21) (4.23) (5.51)
    Dual -19.43* 6.28** 3.49 -27.29***
    (10.80) (3.11) (3.99) (7.83)
    Ratio 143.56** 121.32*** 151.29*** 171.06*** 188.05*** -43.11
    (62.97) (31.76) (37.85) (51.95) (34.48) (52.10)
    Share -32.43 33.71*** 51.98** 41.60*** 54.22*** 41.52
    (173.68) (9.16) (22.27) (12.79) (12.48) (29.73)
    Lev -64.12*** 37.59*** -22.10* 3.38 -9.90 -37.11**
    (21.72) (9.71) (12.26) (16.93) (11.15) (18.33)
    Roa 3.65 115.47*** 32.67 89.94 49.75 -87.89
    (83.02) (34.01) (45.03) (59.61) (40.67) (64.49)
    State 15.55*** -14.75* 12.59*** -8.12
    (4.16) (8.57) (4.07) (6.31)
    Market 65.58*** 18.37*** 46.45*** 45.37***
    (7.71) (4.70) (4.94) (8.45)
    Industry & Year 控制 控制 控制 控制 控制 控制
    常数项 -1 941.34 -1 162.91*** -1 631.58*** -1 549.38*** -1 733.59*** -760.07***
    (69.33) (43.08) (44.09) (71.01) (43.41) (60.85)
    样本观测数 3 367 6 261 6 950 2 678 8 298 1 330
    调整R2 0.373 3 0.202 9 0.286 5 0.246 7 0.303 7 0.191 2
    下载: 导出CSV
  • [1] 李德仁, 邵振峰.论新地理信息时代[J].中国科学:F辑, 2009, 39(6):579-587. doi: 10.1360/zf2009-39-6-579
    [2] 龚健雅, 王国良.从数字城市到智慧城市:地理信息技术面临的新挑战[J].测绘地理信息, 2013(2):11-16. http://www.cnki.com.cn/Article/CJFDTotal-CHXG201302006.htm

    GONG J Y, WANG G L. From digital city to smart city:new challenges to geographic information technology[J]. Journal of Geomatics, 2013(2):11-16. http://www.cnki.com.cn/Article/CJFDTotal-CHXG201302006.htm

    [3] 于焕菊, 李云岭, 齐清文.顾及实体空间关系的地址编码方法研究[J].地理与地理信息科学, 2013(5):53-56;81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201305011

    YU H J, LI Y L, QI Q W. Address geocoding method based on spatial entity relationships[J]. Geography and Geo-information Science, 2013(5):53-56;81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201305011

    [4] 吴睿, 龙华, 熊新, 等.一种多策略结合的地址匹配算法[J].河南理工大学学报(自然科学版), 2019, 38(5):124-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgxyxb201905018

    WU R, LONG H, XIONG X, et al. A multi-strategy combined address matching algorithm[J]. Journal of Henan Polytechnic University(Natural Science), 2019, 38(5):124-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgxyxb201905018

    [5] 张建英, 刘高.地理实体与政务专题数据关联融合方式研究[J].城市勘测, 2018(4):25-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cskc201804006

    ZHANG J Y, LIU G. Study of the combination of geographic entity and government affairs data[J]. Urban Geotechnical Investigation & Surveying, 2018(4):25-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cskc201804006

    [6]

    PUJARA J, MIAO H, GETOOR J, et al. Knowledge graph identification[C]//Proceedings of International Semantic Web Conference. Berlin: Springer, 2013: 542-557.

    [7] 黄恒琪, 于娟, 廖晓, 等.知识图谱研究综述[J].计算机系统应用, 2019, 28(6):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjxtyy201906002

    HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems & Applications, 2019, 28(6):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjxtyy201906002

    [8] 蒋秉川, 万刚, 许剑, 等.多源异构数据的大规模地理知识图谱构建[J].测绘学报, 2018(8):1051-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201808005

    JIANG B C, WAN G, XU J, et al. Geographic knowledge graph building extracted from multi-sourced heterogeneous data[J]. Acta Geodaetica et Cartographica Sinica, 2018(8):1051-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201808005

    [9] 张春菊, 张雪英, 王曙, 等.中文文本的事件时空信息标注[J].中文信息学报, 2016, 30(3):213-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxxxb201603029

    ZHANG C J, ZHANG X Y, WANG S, et al. Annotation of spatial-temporal information of event in Chinese text[J]. Journal of Chinese Information Processing, 2016, 30(3):213-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxxxb201603029

    [10] 张雪英, 张春菊, 朱少楠.中文文本的地理空间关系标注[J].测绘学报, 2012, 41(3):468-474. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201203026

    ZHANG X Y, ZHANG C J, ZHU S N. Annotation for geographical spatial relations in Chinese text[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):468-474. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201203026

    [11] 王姬卜, 陆锋, 吴升, 等.基于自动回标的地理实体关系语料库构建方法[J].地球信息科学学报, 2018, 20(7):871-879. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201807001

    WANG J B, LU F, WU S, et al. Constructing the corpus of geographical entity relations based on automatic annotation[J]. Journal of Geo-information Science, 2018, 20(7):871-879. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201807001

    [12] 高嘉良, 余丽, 仇培元, 等.基于通用知识库的地理实体开放关系过滤方法[J].地球信息科学学报, 2019, 21(9):1392-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201909009

    GAO J L, YU L, QIU P Y, et al. A knowledge-based method for filtering geo-entity relations[J]. Journal of Geo-information Science, 2019, 21(9):1392-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201909009

    [13] 余丽, 陆锋, 刘希亮, 等.稀疏地理实体关系的关键词提取方法[J].地球信息科学学报, 2016, 18(11):1465-1475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201611004

    YU L, LU F, LIU X L, et al. A method of context enhanced keyword extraction for sparse geo-entity relation[J]. Journal of Geo-information Science, 2016, 18(11):1465-1475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201611004

    [14] 陈军, 刘万增, 武昊, 等.基础地理知识服务的基本问题与研究方向[J].武汉大学学报(信息科学版), 2019, 44(1):38-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201901004

    CHEN J, LIU W Z, WU H, et al. Basic issues and research agenda of geospatial knowledge service[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1):38-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201901004

    [15]

    JIANG B C, TAN L H, REN Y, et al. Intelligent interaction with virtual geographical environments based on geographic knowledge graph[J]. ISPRS International Journal of Geo-Information, 2019, 8:428-446. http://cn.bing.com/academic/profile?id=347f367a21b8473d3be83b6cc896fb88&encoded=0&v=paper_preview&mkt=zh-cn

    [16]

    QIAN T Y, LIU B, HUNG N Q V, et al. Spatiotemporal representation learning for translation-based POI recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2):1-24. http://cn.bing.com/academic/profile?id=3644fb128c4769be4c20f39dc78fabe2&encoded=0&v=paper_preview&mkt=zh-cn

    [17]

    ZUHEROS C, TABIK S, VALDIVIA A, et al. Deep recu-rrent neural network for geographical entities disambiguation on social media data[J]. Knowledge-Based Systems, 2019, 173:117-127.

    [18] 栗永芳.面向知识图谱的表示学习研究[D].桂林: 桂林电子科技大学, 2018.

    LI Y F. Research on representation learning for knowledge graph[D]. Guilin: Guilin University of Electronic Technology, 2018.

    [19]

    BENGIO Y, COURVILLE A, VINCENT P. Representation learning:a review and new perspectives[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. http://cn.bing.com/academic/profile?id=c85465126b23431b49f9a58196c59bac&encoded=0&v=paper_preview&mkt=zh-cn

    [20] 姜天文, 秦兵, 刘挺.基于表示学习的开放域中文知识推理[J].中文信息学报, 2018, 32(3):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxxxb201803005

    JIANG T W, QIN B, LIU T. Open domain knowledge reasoning for Chinese based on representation learning[J]. Journal of Chinese Information Processing, 2018, 32(3):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxxxb201803005

    [21]

    BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2):233-259. http://cn.bing.com/academic/profile?id=1c838644a73c73f507f672e799ae382d&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec: AAAI Press, 2014: 1112-1119.

    [23] 程博, 李卫红, 童昊昕.基于BiLSTM-CRF的中文层级地址分词[J].地球信息科学学报, 2019, 21(8):1143-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201908001

    CHEN B, LI W H, TONG H X. Chinese Address segmentation based on BiLSTM-CRF[J]. Journal of Geo-information Science, 2019, 21(8):1143-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201908001

  • 期刊类型引用(2)

    1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 . 百度学术
    2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 . 百度学术

    其他类型引用(0)

表(7)
计量
  • 文章访问数:  973
  • HTML全文浏览量:  569
  • PDF下载量:  50
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-02-19
  • 网络出版日期:  2020-10-11
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回