λ-超曲面的一个积分等式
A Rigidity Theorem of λ-Hypersurfaces
-
摘要: 研究了λ-超曲面,得到了有关完备的λ-超曲面的一个积分等式:若 X :M→\mathbbRn+1是n-维完备的具有多项式面积增长的λ-超曲面且满足S有界,则有∫M(|▽H|2+(H-λ)(H+S(λ-H)))\rme^ - \frac|\mathit\boldsymbolX|^22dμ=0,其中,H是M的平均曲率,S是M的第二基本形式模长平方.并由该积分等式得到了一个刚性结果.Abstract: λ-hypersurfaces are studied and a rigidity result about complete λ-hypersurfaces is given. If X :M→\mathbbRn+1 is an n-dimensional complete λ-hypersurface with polynomial area growth and satisfies S bounded, then ∫M(|▽H|2+(H-λ)(H+S(λ-H)))\rme^ - \frac|\mathit\boldsymbolX|^22dμ=0, where H is the mean curvature of M, S is the squared norm of the second fundamental form of M. As an application of the integral equation, a rigidity result about complete λ-hypersurfaces is obtained.