Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

化州柚与柚的转录组比较及黄酮生物合成差异表达基因分析

颜仁梁, 梁永枢, 周国洪, 夏黎, 林励, 周代营

颜仁梁, 梁永枢, 周国洪, 夏黎, 林励, 周代营. 化州柚与柚的转录组比较及黄酮生物合成差异表达基因分析[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 71-78. DOI: 10.6054/j.jscnun.2020063
引用本文: 颜仁梁, 梁永枢, 周国洪, 夏黎, 林励, 周代营. 化州柚与柚的转录组比较及黄酮生物合成差异表达基因分析[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 71-78. DOI: 10.6054/j.jscnun.2020063
YAN Renliang, LIANG Yongshu, ZHOU Guohong, XIA Li, LIN Li, ZHOU Daiying. Differentially Expressed Genes in Flavonoid Biosynthesis and Transcriptome of Citrus Grandis 'Tomentosa' and Citrus Grandis (L.) Osbeck[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 71-78. DOI: 10.6054/j.jscnun.2020063
Citation: YAN Renliang, LIANG Yongshu, ZHOU Guohong, XIA Li, LIN Li, ZHOU Daiying. Differentially Expressed Genes in Flavonoid Biosynthesis and Transcriptome of Citrus Grandis 'Tomentosa' and Citrus Grandis (L.) Osbeck[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 71-78. DOI: 10.6054/j.jscnun.2020063

化州柚与柚的转录组比较及黄酮生物合成差异表达基因分析

基金项目: 

国家自然科学基金项目 81803693

广东省教育厅科研平台特色创新项目 2018GKTSCX040

广东省中医药局科研项目 20191235

详细信息
    通讯作者:

    周代营,副教授,Email:56166792@qq.com

  • 中图分类号: R282.6

Differentially Expressed Genes in Flavonoid Biosynthesis and Transcriptome of Citrus Grandis 'Tomentosa' and Citrus Grandis (L.) Osbeck

  • 摘要: 为获得化州柚和柚的转录组数据及黄酮类成分生物合成相关的差异表达基因,采集化州柚和柚的嫩叶样本作为受试材料,采用高通量二代测序技术进行转录组测序,并运用Nr、Swiss-Prot、KOG、KEGG等网络数据库进行转录组中表达基因功能的生物信息学分析,共组装得到116 202个单基因(Unigene),注释了68 923个单基因(59.31%),柚转录组中表达基因有94 798个,化州柚中表达基因107 196个,化州柚与柚的转录组差异表达基因共6 419个.结果表明:化州柚相对于柚上调基因有3 799个,占差异表达基因的59.18%,下调基因2 620个,占40.82%.通过与KEGG数据库进行比对,共获得771个基因功能注释,涉及125条代谢通路,找到9个与类黄酮、黄酮和黄酮醇生物合成相关基因,为化州柚和柚的化学成分差异分子基础研究奠定了基因数据基础.
    Abstract: To obtain the transcriptome database and differentially expressed genes of Citrus grandis 'Tomentosa'(CGT) and Citrus grandis (L.) Osbeck (CGO), three samples of CGT and CGO leaves were collected as test materials. The transcriptome sequencing was performed with the second-generation sequencing method, and the bioinformatic analysis was performed using Nr, Swiss-Prot, KOG, KEGG and other databases. 116 202 Unigenes were assembled and 68 923 genes (59.31%) were annotated. 94 798 genomic expression genes were found in the CGO transcriptome and 107 196 genes in the CGT transcriptome. A total of 6 419 differentially expressed genes (DEGs) were found in CGT and CGO. The results showed that 3 799 DEGs of CGT were up-regulated relative to CGO, accounting for 59.18% and 2 620 DEGs were down-regulated, accounting for 40.82%. Compared with the KEGG database, a total of 771 genes were annotated, involving 125 metabolic pathways, and 9 DEGs related to flavonoids or flavone and flavonol biosynthesis were found. The established transcriptome database of CGT and CGO and the functional annotations of related genes lay a foundation of genetic data for the basic molecular research on the chemical constituents of CGT and CGO.
  • 量子计算具有巨大的应用潜力,因此量子计算已成为当前最受瞩目的新兴科技.但是,量子计算的实验实现研究仍然面临着诸多挑战,其中最显著的因素包括量子系统与外界环境相互作用导致退相干,以及量子操控时存在系统误差等问题.因此,针对这些问题,快速高鲁棒性的量子逻辑操作就显得尤为重要.因为几何相位[1-3]具有内禀的抗操作误差特性[4-5],所以它可被用于实现高鲁棒性的量子门.

    在早期的研究中,几何量子计算通过绝热演化的方式实现.此时,由于绝热演化过程要求的操作时间很长,所以在此过程中,量子态受退相干的影响非常严重.为了克服这个问题,相关研究报道了基于非绝热阿贝尔[6-9]和非阿贝尔几何相位[10-11]的量子计算策略.然而,这些实现方案对系统的控制误差与动力学门一样敏感,因而几何量子门的鲁棒性优势被减弱[12-13].为了解决这个问题,基于非阿贝尔几何相位,有研究从理论上[14-15]提出并通过实验[16]实现了可与优化控制技术[17]相结合的量子计算方案.

    基于非阿贝尔几何相位量子门方案的实验实现研究比较复杂,而基于二能级体系的阿贝尔几何量子门的实验更易实现.另外,由于超导电路系统[18]易实现大规模集成且具有非常好的可操控性,因而该系统受到了广泛关注.所以,本文基于超导电路体系提出一种在实验上切实可行的非绝热几何量子计算方案.该方案可以很好地与优化控制技术相结合,可进一步提高量子门的鲁棒性.因此,本文的工作向着容错固态量子计算方向的发展迈出了重要的一步.

    利用动力学不变量加速绝热演化过程,是避免因演化时间过长导致退相干对量子门影响过大的有效手段.在计算基矢S1={|0〉, |1〉}中,对于哈密顿量为

    H(t)=12(0Ω(t)eiξ(t)Ω(t)eiξ(t)0) (1)

    的二能级系统,可以找到满足冯诺依曼关系式

    tI+i[H,I]=0

    的对应不变量I.不变量的矩阵形式可写为

    I(t)=Ω02(cosχ(t)sinχ(t)eiβ(t)sinχ(t)eiβ(t)cosχ(t)), (2)

    h=1,Ω0为具有频率单位的常数.不变量的本征态为

    |ϕ+(t)=cosχ2eiβ(t)|0+sinχ2eiβ/2|1,
    |ϕ(t)=sinχ2eiβ/2|0+cosχ2eiβ/2|1,

    其中, 含时变化的角度χ(t)和β(t)可作为反向设计H(t)的辅助参量.

    根据不变量理论,可以找到H(t)相应薛定谔方程的2个正交完备解,即|ψ+(t)〉=eif+(t)|ϕ+(t)〉、|ψ-(t)〉=eif-(t)|ϕ+(t)〉,其中f+f为相应的相位,且有f+=-f.为了更方便地得到1个纯几何相位,本文考虑哈密顿量驱动演化初态并进行循环演化的情况.设定在演化初始时刻满足f+(0)=f(0)=0,此时薛定谔方程的2个解与不变量本征态重合,从而可以利用不变量的本征态作为获得几何相位的演化态.由于|ϕ+(t)〉和|ϕ-(t)〉的演化路径具有对称性,所以仅需设计其中一个态矢量(如|ϕ+(t)〉的演化路径)即可反向确定微波驱动场的波形Ω(t)和相位ξ(t).在循环演化的终止时刻,令γ=f+(τ),可以将哈密顿量对应的演化算符写为

    \mathit{\boldsymbol{U}}\left( \tau \right) = {{\rm{e}}^{{\rm{i \mathit{ γ} }}}}{\rm{|}}{\mathit{\boldsymbol{\phi}} _{\rm{ + }}}\left. {\left( 0 \right)} \right\rangle \left\langle {{\mathit{\boldsymbol{\phi}} _{\rm{ + }}}\left( 0 \right)} \right.| + {{\rm{e}}^{{\rm{ - i \mathit{ γ} }}}}|{\mathit{\boldsymbol{\phi}} _ - }\left. {\left( 0 \right)} \right\rangle \left\langle {{\mathit{\boldsymbol{\phi}} _ - }\left( 0 \right)} \right.|, (3)

    其中,相位γ包含动力学部分

    \begin{array}{l} {{\rm{ \mathit{ γ} }}_d} = - \int_0^\tau {\left\langle {\mathit{\boldsymbol{\phi}} \left( t \right)|\mathit{\boldsymbol{H}}\left( t \right)} \right.} \left. {|\mathit{\boldsymbol{\phi}} \left( t \right)} \right\rangle {\rm{d}}t= \\ \;\;\;\;\;\;\;\frac{1}{2}\int_0^\tau {\frac{{\dot \beta \left( t \right){{\sin }^2}\chi \left( t \right)}}{{\cos \chi \left( t \right)}} {\rm{d}}t} \end{array} (4)

    和几何部分

    {{\rm{ \mathit{ γ} }}_g} = {\rm{i}}\int_0^\tau {\left\langle {{\mathit{\boldsymbol{\phi}}} \left( t \right)} \right.} \left. {|\dot{\mathit{\boldsymbol{\phi}}} \left( t \right)} \right\rangle {\rm{d}}\mathit{t} = \frac{1}{2}\int_0^\tau {\dot \beta \left( t \right)\cos \chi \left( t \right){\rm{d}}\mathit{t}} . (5)

    当消除动力学部分后,即可得到1个纯几何的相位.最后,将初始时刻的不变量本征态代入演化算符表达式中可得:

    \mathit{\boldsymbol{U}}\left( \tau \right) = \left( \begin{array}{l} \cos \gamma + {\rm{i}}\cos {\chi _0}\sin \gamma \;\;{\rm{i}}\sin \gamma \sin {\chi _0}{{\rm{e}}^{ - {\rm{i}}{\beta _0}}}\\ {\rm{i}}\sin \gamma \sin {\chi _0}{{\rm{e}}^{{\rm{i}}{\beta _0}}}\;\;\cos \gamma - {\rm{i}}\cos {\chi _0}\sin \gamma \end{array} \right) = {{\rm{e}}^{{\rm{i}}\gamma \mathit{\boldsymbol{\vec n}} \cdot \mathit{\boldsymbol{\vec \sigma }}}}, (6)

    其中, {\chi _0} = \chi \left( 0 \right), {\beta _0} = \beta \left( 0 \right), \mathit{\boldsymbol{\vec n = }}\left( {\sin {\chi _0}\cos {\beta _0}, \sin {\chi _0} \times \sin {\beta _0}, \cos {\chi _0}} \right).式(6)即绕任意轴\mathit{\boldsymbol{\vec n}}旋转-2γ角度的几何操作,可以用来实现任意的单比特量子门.

    另外,在2个电容耦合的超导比特体系中[9],通过对其中一个超导比特频率的含时调制,使2个比特之间的耦合达到等效共振.此时,在{|11〉AB, |20〉AB}子空间共振的情况下,2比特的相互作用形式与式(1)的形式完全相同,因此可以类比单比特的方式实现非平庸的2比特几何量子门.

    根据上述研究方法,首先,利用非绝热循环演化的方式产生阿贝尔几何相位,从而在超导transmon比特[19]中实现任意的单比特几何量子门; 然后给出绕XZ轴旋转这2种门操作的具体实现方案(图 1),并进行数值模拟; 最后采用优化控制技术进一步提升量子门的鲁棒性.

    图  1  单量子比特门
    Figure  1.  The single-qubit gate

    利用微波共振驱动超导transmon量子比特最低的2个能级可以实现单比特量子门(图 1A).但此时驱动微波场也会在超导比特高能态之间引起不必要的色散相互作用.这里先作简化处理,只考虑最低能态的2个能级,则系统的哈密顿量可写为式(1)的形式.根据不变量的冯诺依曼公式,可得到辅助参数χ(t)、β(t)与驱动频率Ω(t)、相位ξ(t)间的关系式:

    \dot \chi \left( t \right) = - \mathit{\Omega }\left( t \right){\rm{sin}}\left[ {\beta \left( t \right) + \xi \left( t \right)} \right]{\rm{, }} (7)
    \dot \beta \left( t \right) = - \mathit{\Omega }\left( t \right){\rm{cos}}\chi \left( t \right){\rm{cos}}[\beta \left( t \right) + \xi \left( t \right)]. (8)

    由此可以通过设计循环演化过程中的辅助参数χ(t)和β(t), 进行数值计算, 求出Ω(t)和ξ(t).同时为了简化表述,引入一个含时参数f(t)=-2f+(t).联立(3)、(4)可以得到f(t)的导数函数:

    \dot f\left( t \right) = - \frac{{\dot \beta \left( t \right)}}{{{\rm{cos}}\chi \left( t \right)}}. (9)

    在上式的基础上,只需要选定χ(t)和f(t)的函数形式,β(t)的形式就可以确定.接下来将具体实现绕X轴旋转的几何门和绕Z轴旋转的几何门.

    为实现绕X轴旋转的几何门,将循环过程分为4个相等的时间段,态矢量|ϕ+(t)〉的极角和方位角函数可设计为

    \begin{array}{l} {\chi _1}\left( t \right) = {\rm{ \mathit{ π} }}\left[ {1 + {\rm{si}}{{\rm{n}}^2}(2{\rm{ \mathit{ π} }}t/\tau )} \right]/2, \\ \;\;\;\;{\beta _1}\left( 0 \right) = 0, t \in \left[ {0, \tau /4} \right]; \end{array} (10)
    \begin{array}{l} \;\;\;\;\;\;\;{\chi _2}\left( t \right) = {\rm{ \mathit{ π} }}\left[ {1 + {\rm{si}}{{\rm{n}}^2}(2{\rm{ \mathit{ π} }}t/\tau )} \right]/2, \\ {\beta _2}\left( {\tau /4} \right) = {\beta _1}\left( {\tau /4} \right) - \gamma , t \in \left[ {\tau /4, \tau /2} \right]; \end{array} (11)
    \begin{array}{l} \;\;\;\;\;\;\;{\chi _3}\left( t \right) = {\rm{ \mathit{ π} }}\left[ {1 - {\rm{si}}{{\rm{n}}^2}(2{\rm{ \mathit{ π} }}t/\tau )} \right]/2, \\ {\beta _3}\left( {\tau /2} \right) = {\beta _2}\left( {\tau /2} \right), t \in \left[ {\tau /2, 3\tau /4} \right]; \end{array} (12)
    \begin{array}{l} \;\;\;\;\;\;\;{\chi _4}\left( t \right) = {\rm{ \mathit{ π} }}\left[ {1 - {\rm{si}}{{\rm{n}}^2}(2{\rm{ \mathit{ π} }}t/\tau )} \right]/2, \\ {\beta _4}\left( {3\tau /4} \right) = {\beta _3}\left( {3\tau /4} \right) + \gamma , t \in \left[ {3\tau /4, \tau } \right]. \end{array} (13)

    选取fj(t)=cos2χj(t)/5,每段方位角用

    {\beta _j}\left( t \right) = - \int {{{\dot f}_j}\left( t \right){\rm{cos}}{\chi _j}\left( t \right){\rm{d}}t}

    来计算.为了验证循环演化产生的相位为纯几何相位,首先计算演化过程中的动力学相位

    {\gamma _d} = \sum\limits_{j = 1}^4 {\int_{\left( {j - 1} \right)\tau /4}^{j\tau /4} { - {{\dot f}_j}\left( t \right){\rm{si}}{{\rm{n}}^2}{\chi _j}\left( t \right)/2{\rm{d}}t = 0} } , (14)

    同时,由于方位角β(t)在t=τ /4和t=3τ/4这2个时刻发生突变,从而容易证明几何相位γg=γ.这样就实现了绕X轴旋转操作的纯几何门.

    为了实现绕Z轴旋转的几何操作,将单圈演化成2段.这2段路径上的极角和方位角分别为

    \begin{array}{l} {\chi _1}\left( t \right) = \left. {{\rm{ \mathit{ π} si}}{{\rm{n}}^2}\left( {{\rm{ \mathit{ π} }}t/\tau } \right)} \right]\\ {\beta _1}\left( 0 \right) = 0, t \in \left[ {0, \tau /2} \right]{\rm{;}} \end{array} (15)
    \begin{array}{l} {\chi _2}\left( t \right) = \left. {{\rm{ \mathit{ π} si}}{{\rm{n}}^2}\left( {{\rm{ \mathit{ π} }}t/\tau } \right)} \right]\\ {\beta _2}\left( {\tau /2} \right) = {\beta _1}\left( {\tau /2} \right) - \gamma , \\ \;\;\;\;\;\;\;t \in \left[ {\tau /2, \tau } \right]. \end{array} (16)

    选取fj(t)=(2χj(t)-sin2χj(t))/5,和实现绕X轴旋转操作一样,每段方位角也用

    {\beta _j}\left( t \right) = - \int {{{\dot f}_j}\left( t \right){\rm{cos}}{\chi _j}\left( t \right){\rm{d}}t}

    来计算.同样可计算演化过程的动力学相位

    {\gamma _d} = \sum\limits_{j = 1}^2 {\int_{\left( {j - 1} \right)\tau /2}^{j\tau /2} { - {{\dot f}_j}\left( t \right){\rm{si}}{{\rm{n}}^2}{\chi _j}\left( t \right)/2{\rm{d}}t = 0} {\rm{. }}} (17)

    在量子门的物理实现过程中,退相干是影响保真度的一个重要因素.由于超导transmon量子比特的非谐性较小,本文采取有效的修正方案[20]来抑制因量子信息泄露导致的误差.通常使用Lindblad主方程评估量子门的性能.主方程为

    {\mathit{\boldsymbol{\dot \rho }}_1} = {\rm{i}}\left[ {{\mathit{\boldsymbol{\rho }}_1}, \mathit{\boldsymbol{H}} + {\mathit{\boldsymbol{H}}_{{\rm{leak}}}}} \right] + \left[ {{\mathit{\boldsymbol{ \boldsymbol{\varGamma} }}_1}\mathit{\boldsymbol{L}}\left( {{\mathit{\boldsymbol{\sigma }}_1}} \right) + {\mathit{\boldsymbol{ \boldsymbol{\varGamma} }}_2}\mathit{\boldsymbol{L}}\left( {{\mathit{\boldsymbol{\sigma }}_2}} \right)} \right], (18)

    且有

    {\mathit{\boldsymbol{H}}_{{\rm{leak}}}}\left( t \right) = - \alpha \left. {|2} \right\rangle \left\langle {2|} \right. + \left[ {\sqrt 2 \mathit{\Omega }(t){\rm{e}^{{\rm{i}}\xi \left( t \right)}}\left. {|1} \right\rangle \left\langle {2| + {\rm{H}}.{\rm{c}}.} \right.} \right], (19)

    其中,L(A)=2Aρ1A+A+1ρ1A+A, 是算符A的Lindblad算符,{\mathit{\boldsymbol{\sigma }}_1} = |\left. 0 \right\rangle \left\langle {1|} \right. + \sqrt 2 \left. {|1} \right\rangle σ2=|1〉〈1|+2|2〉〈2|. Γ1Γ2分别代表transmon的衰减和退相速率.根据现有的实验技术条件[18],设Γ1=Γ1=2π×2 kHz,transmon比特的非谐为α=2π×300 MHz,微波驱动波形振幅最大值Ωmax=2π×16 MHz.这里通过选取χ0=π/2、β0=0、γ=π/2来实现非门,通过选取χ0=0、β0=0、γ=-π/8来实现相位门.二者循环演化周期分别为102 ns和125 ns.实现这2个门所需的驱动振幅Ω(t)波形和相位(t)波形如图 2A图 2B所示. 1个量子态|Φ(t)〉经过单比特量子门演化以后的保真度F=〈 Φ (τ)|ρ1|Φ(τ)〉.对于非门,假设演化初态| Φ(0)〉N=|0〉,则其演化末态|Φ(τ)〉N=|1〉.对于相位门,假设演化初态\mathit{\boldsymbol{| \boldsymbol{\varPhi} }}{\left. {\left( 0 \right)} \right\rangle _T} = \left( {|\left. 0 \right\rangle + |\left. 1 \right\rangle } \right)/\sqrt 2 ,则其演化末态\mathit{\boldsymbol{| \boldsymbol{\varPhi} }}{\left. {\left( \tau \right)} \right\rangle _T} = \left( {|\left. 0 \right\rangle + {\rm{e}^{{\rm{i \mathit{ π} }}/4}}|\left. 1 \right\rangle } \right)/\sqrt 2 .根据数值计算结果,非门和相位门的态保真度分别为FN=99.87%和FT=99.80%(图 2CD).为了计算量子门的保真度,这里假设初态均为|Φ(0)〉=cosθ|0〉+sinθ|1〉,则演化以后,非门得到的末态为|Φ(τ)〉N=sinθ|0〉+ cosθ|1〉,相位门得到的末态为|Φ(τ)〉T=cosθ|0〉+eiπ/4sinθ|1〉. θ在[0, 2π]间均匀取1 001个值,通过定义量子门的保真度

    图  2  单量子比特几何门的实现及其性能
    Figure  2.  The implementation of geometric single-qubit gates and their performance
    {F^G} = 1/2{\rm{ \mathit{ π} }}\int_0^{2{\rm{ \mathit{ π} }}} {\left\langle {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( \tau \right)} \right.\left| {{\rho _1}} \right|\left. {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( \tau \right)} \right\rangle } {\rm{d}}\theta ,

    最终计算得到非门和相位门的保真度分别为FNG=99.87%和FTG=99.84%.

    基于前面实现的单比特量子门,接下来将优化控制技术[17]应用到演化路径的设计上,以实现绕Z轴旋转的几何操作.假设存在一个静态的系统误差,即V(t)=εH(t).由于演化路径由对称的2段组成,所以只需要优化第一段演化路径.这里用|ψ+(t)〉来表示演化过程,则演化初态为|ψ+(0)〉,理想的目标态为|ψ+(τ/2)〉.设目标函数

    P = |\left\langle {{\mathit{\boldsymbol{\psi }}_ + }} \right.\left( {\tau /2} \right)|\left. {\mathit{\boldsymbol{ \boldsymbol{\varPsi} }}\left( {\tau /2} \right)} \right\rangle {|^2} = 1 + {\tilde O_1} + {\tilde O_2} + \cdots , (20)

    其中,|Ψ(t)〉为存在系统误差时系统的量子态,{\tilde O_n}表示n阶微扰.这里忽略高阶项,只保留到二阶,即P = 1 + {\tilde O_1} + {\tilde O_2}..通过计算可得

    {\tilde O_1} = 0, {\tilde O_2} = - |\int_0^{\tau /2} {z\left( t \right){\rm{d}}t} {|^2}. (21)

    其中,

    z\left( t \right) = \frac{\varepsilon }{2}(\frac{1}{2}{\rm{ }}\dot f(t){\rm{sin}}\left( {2\chi \left( t \right)} \right) - {\rm{i}}\dot \chi \left( t \right)){e^{{\rm{i}}f(t)}}.

    为了消除了二阶微扰的影响,必须要求z(t)在t=[0, τ/2]时间段积分为0.对应方程解的形式可以写为

    f\left( \chi \right) = 2\chi + {C_1}\sin \left( {2\chi } \right) + {C_2}\sin \left( {4\chi } \right) + \cdots , (22)

    通过数值计算,当取C1=-1,其余系数均取0时,关于z(t)的积分为0.

    为了评估本文优化方案的效果,给f(t)加系数f(t)=η[2χ(t)-sin(2χ(t))].结果表明:当η=0时,该方案就退回到优化前的方案[6-9]; 当η=1时,则对应于本文的优化方案.

    在系统误差εΩmax的取值范围(2π×[-5, 5]MHz)内,给出2个方案对系统误差的鲁棒性对比图(图 3).结果表明:当不考虑退相干影响时,优化方案对系统误差的鲁棒性效果要远优于未优化方案的效果; 当考虑实际情况中退相干的影响时,优化方案的鲁棒性依然很出色.

    图  3  未优化(η=0)与优化(η=1)相位门的保真度
    Figure  3.  The fidelity of phase gate without (η=0) and with (η=1) optimization

    基于超导量子电路,提出了构建快速通用的几何量子计算方案.通过施加共振耦合驱动,在单个超导比特上实现了任意的单量子比特门.同时提出的方案可以结合优化技术,提高量子门对静态系统误差的鲁棒性.在2比特超导电容耦合体系中可实现非平庸的双比特量子门.由于本文的方案可以直接扩展到二维比特阵列情形,因此研究结果为实现容错量子计算提供了一条可靠的道路.

  • 图  1   化州柚和柚转录组Unigene基因的长度分布图

    Figure  1.   The Unigene length distribution in the transcriptome of CGT and CGO

    图  2   化州柚与柚转录组在4个数据库基因注释的维恩图

    Figure  2.   The Venn diagram of the transcriptome annotated in the four databases of CGT and CGO

    图  3   化州柚与柚转录组Unigene基因的KOG功能分类图

    Figure  3.   The functional classification of KOG in the transcriptome of CGT and CGO

    图  4   化州柚与柚转录组Unigene基因的GO功能分类图

    Figure  4.   The functional classification of GO in the transcriptome of CGT and CGO

    图  5   化州柚与柚转录组Unigene基因的KEGG通路注释

    Figure  5.   The KEGG pathway annotation in the transcriptome of CGT and CGO

    表  1   化州柚与柚转录组中与黄酮类成分生物合成相关的差异表达基因

    Table  1   The differentially expressed genes related to flavonoids biosynthesis in the transcriptome of CGT and CGO

    基因编号 基因 CGO_rpkm CG_rpkm P 错误发现率(FDR)
    Unigene0018220 C12RT1 27.22±3.76 9.51±2.18 1.81E-08 9.79E-07
    Unigene0001546 RT 9.36±2.44 23.75±3.62 3.20E-06 1.21E-04
    Unigene0062842 3GGT 18.53±5.34 0.05±0.072 7.37E-51 5.51E-48
    Unigene0102621 CYP73A12 0.054±0.004 0 0.40±0.34 1.72E-03 3.11E-02
    Unigene0032665 TSM1 0.078 5±0.07 2.47±0.47 2.16E-22 3.98E-20
    Unigene0000397 CHS1 0.46±0.28 1.29±0.07 8.21E-04 1.68E-02
    Unigene0024628 FLS 15.06±4.48 4.97±0.48 1.50E-07 7.08E-06
    Unigene0011342 HCT 8.50±4.28 0.06±0.04 2.30E-34 8.25E-32
    Unigene0029908 HCT 0.32±0.13 2.65±0.53 1.32E-14 1.39E-12
    Unigene0037769 HCT 53.54±1.68 25.88±1.19 2.66E-07 1.21E-05
    Unigene0093083 HCT 0.77±0.24 0.09±0.06 8.08E-08 3.98E-06
    Unigene0115527 HCT 0.005 6±0.009 7 2.01±0.74 1.35E-27 3.41E-25
    Unigene0018220 C12RT1 27.22±3.76 9.51±2.18 1.81E-08 9.79E-07
    Unigene0015054 LAR 0.90±0.38 0.08±0.05 3.19E-08 1.67E-06
    下载: 导出CSV
  • [1] 李晓光, 林励, 陈志霞.化州柚与柚的性状及组织显微鉴别[J].中药材, 2002, 25(6):401-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc200206010

    LI X G, LIN L, CHEN Z X. Descriptions and microscopy identification of Citrus grandis var. tomentosa hort. and Citrus grandis Osbeck[J]. Journal of Chinese Medicinal Materials, 2002, 25(6):401-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc200206010

    [2] 邬龙怡, 胡珊, 杨志业, 等. SCoT分子标记对不同品种化橘红的亲缘关系分析[J].现代中药研究与实践, 2018, 32(6):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jczyzz201806004

    WU L Y, HU S, YANG Z Y, et al. Study on the genetic relationship of exocarpium Citrus grandis by SCoT molecular markers[J]. Research and Practice on Chinese Medicines, 2018, 32(6):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jczyzz201806004

    [3] 田静, 庞一波, 陈嘉景, 等.化州柚种质资源的SSR分析及其果实不同发育期柚皮苷含量变化[J].华中农业大学学报, 2019, 38(5):64-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hznydx201905009

    TIAN J, PANG Y B, CHEN J J, et al. SSR analyses of germplasm resources and changes of naringin content at different developmental stages of Citrus grandis 'Tomentosa' fruit[J]. Journal of Huazhong Agricultural University, 2019, 38(5):64-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hznydx201905009

    [4] 芦海生, 李婷, 姜丹, 等.基于DNA条形码、UPLC及色度学方法鉴定与评价化橘红[J].中国中药杂志, 2019, 44(20):4419-4425. http://www.cnki.com.cn/Article/CJFDTotal-ZGZY201920021.htm

    LU H S, LI T, JIANG D, et al. Identification and evaluation of Citrus grandis based on DNA barcode, UPLC and chromaticity method[J]. China Journal of Chinese Materia Medica, 2019, 44(20):4419-4425. http://www.cnki.com.cn/Article/CJFDTotal-ZGZY201920021.htm

    [5]

    YU E A, KIM G S, LEE J E, et al. Flavonoid profiles of immature and mature fruit tissues of Citrus grandis Osbeck (Dangyuja) and overall contribution to the antioxidant effect[J]. Biomedical Chromatography, 2015, 29(4):590-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/bmc.3496

    [6]

    YU X, CAO J P, LUO F L, et al. Simultaneous purification of limonin, nomilin and isoobacunoic acid from pomelo fruit (Citrus grandis) segment membrane[J]. Journal of Food Science, 2014, 79(10):C1956-1963. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/1750-3841.12581

    [7]

    LI P L, LIU M H, HU J H, et al. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 90:167-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4751754292e0dc23e9802119520aaed

    [8]

    WANG P X, BO F, ZHAO Q Y, et al. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties[J]. Food Chemistry, 2014, 161:230-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cef4e95686653b34bafe29b03176dd4

    [9] 陈昭, 张靖年, 陈伟韬, 等. UHPLC-MS-MS同时测定化橘红中3个影响PXR-CYP3A4调控血脂成分[J].辽宁中医药大学学报, 2020, 22(1):54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnzyxyxb202001017

    CHEN Z, ZHANG J N, CHEN W T, et al. Simultaneous determination of three active compounds with PXR-CYP3A4 mediated lipid regulatory effect in Citrus grandis tomentosa[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2020, 22(1):54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnzyxyxb202001017

    [10]

    ZHANG M, NAN H, WANG Y, et al. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China[J]. Molecules, 2014, 19(11):17314-17328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=molecules-19-17314

    [11] 林励, 李向明, 万建义, 等.化橘红药材质量评价、监测与应用研究[J].中国现代中药, 2010, 12(8):21-26;36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201008006

    LIN L, LI X M, WAN J Y, et al. Quality evaluation, monitoring and application study of the medicinal material Citrus grandis 'Tomentosa'[J]. Modern Chinese Medicine, 2010, 12(8):21-26;36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201008006

    [12] 文海涛, 赵红英, 林励, 等.化橘红黄酮类生物合成中功能基因的克隆与序列分析[J].中药材, 2010, 33(11):1686-1689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc201011005

    WEN H T, ZHAO H Y, LI L, et al. Cloning and sequence analysis on functional genes of flavonoid biosynthesis in Citrus grandis 'Tomentosa'[J]. Journal of Chinese Medicinal Materials, 2010, 33(11):1686-1689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc201011005

    [13]

    LI J, MA L, ZHANG S, et al. Transcriptome analysis of 1- and 3-year-old Panax notoginseng roots and functional characterization of saponin biosynthetic genes DS and CYP716A47-like[J]. Planta, 2019, 249(4):1229-1237. https://pubmed.ncbi.nlm.nih.gov/30607503/

    [14]

    FABIO P, ALESSANDRO V, VITULO N, et al. The leaf transcriptome of fennel (Foeniculum vulgare Mill.) enables characterization of the t-anethole pathway and the discovery of microsatellites and single-nucleotide variants[J]. Scientific Reports, 2018, 8:10459/1-12. https://www.nature.com/articles/s41598-018-28775-2

    [15]

    DENG Y, ZHENG H, YAN Z, et al. Full-length transcriptome survey and expression analysis of Cassia obtusifolia to discover putative genes related to aurantio-obtusin biosynthesis, seed formation and development, and stress response[J]. International Journal of Molecular Sciences, 2018, 19:2476/1-30.

    [16]

    AN H Q, ZHU Q K, PEI W, et al. Whole-transcriptome selection and evaluation of internal reference genes for expression analysis in protocorm development of Dendrobium officinale Kimura et Migo[J]. Plos One, 2016, 11(11):e0163478/1-19. https://pubmed.ncbi.nlm.nih.gov/27814359/

    [17]

    WANG X, CHEN D, WANG Y, et al. De Novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita[J]. PLoS One, 2015, 10(4):e0124560/1-18. https://pubmed.ncbi.nlm.nih.gov/25860891/

    [18]

    LIN W J, HUANG W, NING S J, et al. De Novo characterization of the Baphicacanthus cusia (Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism[J]. PLoS One, 2018, 13(7):e0199788/1-15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033399/

    [19]

    YU G, ZHOU Y, YU J, et al. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis[J]. Scientific Reports, 2019, 9:10035/1-11. https://www.nature.com/articles/s41598-019-46414-2

    [20]

    LIN W J, SUN F L, ZHANG Y M, et al. Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics[J]. Scientific Reports, 2019, 9:12310/1-12. https://www.researchgate.net/publication/335352950_Comparative_transcriptome_and_metabolite_profiling_of_four_tissues_from_Alisma_orientale_Sam_Juzep_reveals_its_inflorescence_developmental_and_medicinal_characteristics

    [21]

    LIU Y Y, CHEN X R, WANG J P, et al. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J]. BMC Plant Biology, 2019, 19:487/1-16. https://www.researchgate.net/publication/337179865_Transcriptomic_analysis_reveals_flavonoid_biosynthesis_of_Syringa_oblata_Lindl_in_response_to_different_light_intensity

    [22]

    PENG X, WU H, CHEN H, et al. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress[J]. BMC Genomics, 2019, 20:687/1-15.

    [23]

    CHEN K, HU Z M, SONG W, et al. Diversity of O-Glycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis[J]. ACS Synthetic Biology, 2019, 8(8):1858-1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e22b797fa590af26a4de2357f42f9723

    [24]

    YUE J Y, ZHU C X, ZHOU Y, et al. Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'[J]. Scientific Reports, 2018, 8(1):715-766. https://pubmed.ncbi.nlm.nih.gov/30194355/

    [25]

    CHEN Z X, LIU G H, TANG N, et al. Transcriptome analysis reveals molecular signatures of luteoloside accumulation in senescing leaves of Lonicera macranthoides[J]. International Journal of Molecular Sciences, 2018, 19:1012/1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ijms-19-01012

    [26]

    GUO D D, LIU F, TU Y H, et al. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis[J]. PLoS One, 2016, 11(7):e0158159/1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004675386

    [27]

    SAVITA B, VASUNDHARA T, JAGDEEP K, et al. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis[J]. Genomics, 2019, 111(6):1474-1482. https://www.onacademic.com/detail/journal_1000040866870210_3fe7.html

    [28]

    YUN Z, JIN S, DING Y D, et al. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage[J]. Journal of Experimental Botany, 2012, 63(8):2873-2893. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b4013a64aa0c30396df8964a4928b21

    [29]

    LIANG M, YANG X, LI H, et al. De Novo transcriptome assembly of pummelo and molecular marker development[J]. PLoS One, 2015, 10(3):e0120615/1-20. https://pubmed.ncbi.nlm.nih.gov/25799271/

    [30]

    GUO F, YU H W, XU Q, et al. Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis)[J]. BMC Plant Biology, 2015, 15:44/1-12. doi: 10.1186/s12870-015-0435-3

    [31]

    LIN W J, HUANG W, NING S J, et al. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremekand differentially expressed genes involved in tryptophan biosynthesis[J]. PLoS One, 2019, 14(3):e0212863/1-17.

    [32]

    LIU S Q, LI W S, WU Y M, et al. De Novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids[J]. PLoS One, 2013, 8(1):e48156/1-8. https://europepmc.org/articles/PMC3551913

    [33]

    CHEN J F, DONG X, LI Q, et al. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling[J]. BMC Genomics, 2013, 14:857/1-13. doi: 10.1186/1471-2164-14-857

    [34]

    GAO M P, ZHANG S W, LUO C, et al. Transcriptome analysis of starch and sucrose metabolism across bulb development in Sagittaria sagittifolia[J]. Gene, 2018, 649:99-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=446959ab3cb62cc3e45fc3a2df159fc8

    [35]

    YU R G, XU L, ZHANG W, et al. De Novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7:585/1-12. https://core.ac.uk/reader/82834243

图(5)  /  表(1)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  453
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2020-08-24

目录

/

返回文章
返回