Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries
-
摘要: 尖晶石钛酸锂(Li4Ti5O12)作为锂离子电池负极材料具有长寿命、高稳定性的特点,是高功率锂离子电池的理想选择,对发展电动汽车以及智能电网有重要意义.结合球差校正透射电镜(STEM)、电子能量损失谱(EELS)和理论计算,在原子尺度观测到了尖晶石钛酸锂(Li4Ti5O12)的结构,实现了对脱嵌锂过程的直接观测与表征.在锂化过程中,出现一个近似理想的异质界面(Li4Ti5O12/Li7Ti5O12),界面两侧Ti离子呈不同价态分布(Ti3+/Ti4+).而随着锂离子在材料中的嵌入和脱出,TiO6八面体里面的Ti—O键会产生相应的收缩或拉伸(“呼吸”模型),而这种键长的变化直接导致材料在不同区域的电子电导率产生质的变化(由绝缘体的Li4Ti5O12向近似导体的Li7Ti5O12转变),而基本不影响材料的离子电导率,这是材料具有优良倍率性能的重要条件.借助原子分辨的EELS分析研究锂化以后的Li7Ti5O12表面, 观测到材料表面的Ti3+自发氧化成Ti4+,这个电荷转移过程可以诱导电极材料界面上的副反应,可以合理解释钛酸锂电池产气的原因.进一步将钛酸锂电池用于储钠研究发现了晶格中存在Li4Ti5O12/Li7Ti5O12/Na6LiTi5O12三相分离机制,深化了对电极材料过程动力学的认识.这些重要研究结果为钛酸锂的工业化应用提供了重要的结构基础与理论指导.Abstract: Li4Ti5O12 spinel has been regarded as one of the ideal anode materials for Li ion batteries and is a good candidate for developing high performance electric automobiles and smart grids for its characteristics of the long electrochemical cycle-life, high-structural stability and power density. Atomic-scale visualization of Li4Ti5O12 spinel upon lithiation is realized using spherical aberration corrected transmission electron microscope (STEM), electron energy loss spectroscopy (EELS) and first-principles calculations. Upon lithiation, the Li4Ti5O12 spinel transforms into the rock-salt Li7Ti5O12 phase by developing an almost ideal hetero-interface and the Ti ions demonstrate different chemical states on the different sides of the interface. Further observation indicates that the elongation and shrinkage of Ti—O bonds in TiO6 octahedra (breathing model) results in the fundamental changes of electronic conductivity in lithiated Li4Ti5O12, where the insulating Li4Ti5O12 is transformed into a quasi-conducting Li7Ti5O12 phase. But these changes show limited influence on ionic conductivity. Using atomic-scale EELS analysis, a spontaneous oxidization process of Ti3+ to Ti4+ is revealed on the surface of Li7Ti5O12 phase. This spontaneously surficial charge transfer reaction is revealed to be strongly related with the package swelling issue of Li4Ti5O12 battery during cycling. Moreover, a three-phase separation, including the Li4Ti5O12, Li7Ti5O12 and Na6LiTi5O12 phases, is found during Na insertion when Li4Ti5O12 is employed as anode for sodium ion battery. All these important findings provide a rewarding avenue for the structural design and optimization of battery materials and lay a solid foundation for industrial application of Li4Ti5O12 anode.
-
Keywords:
- lithium titanate /
- phase separation /
- breathing model /
- Li-ion batteries /
- anode
-
-
表 1 Li4Ti5O12/Li7Ti5O12超晶胞中不同锂离子构型的总能量计算值[3]
Table 1 The calculated total energy of different Li ion arrangements in Li4Ti5O12/Li7Ti5O12 supercell[3]
构型 Li4Ti5O12 Li7Ti5O12 N(8a) N(16c) N(16d) 总能量/eV N(8a) N(16c) N(16d) 总能量/eV 1 6 0 2 0 0 12 2 0 2 5 1 2 1.356 1 11 2 2.237 3 4 2 2 3.584 2 10 2 5.560 4 3 3 2 4.912 3 9 2 6.962 5 2 4 2 4.478 4 8 2 7.412 6 1 5 2 3.321 5 7 2 8.441 7 0 6 2 3.262 6 6 2 9.468 注:N为不同位点的原子数. 表 2 Li7Ti5O12中Ti离子的Bader电荷分析[3]
Table 2 The Bader atomic charge analysis of the Ti ions in Li7Ti5O12 supercell[3]
GGA结果 GGA+U (Ueff=4.5 eV)结果 电荷/e Dmin/nm V/(×10-3 nm3) 电荷/e Dmin/nm V/(×10-3 nm3) 1.494 2 0.670 8 4.273 3 1.382 9 0.654 3 4.201 1 1.499 1 0.667 5 4.294 5 1.350 9 0.541 8 4.062 8 1.508 6 0.673 5 4.278 6 1.383 7 0.678 4 4.168 3 1.496 2 0.614 0 4.256 2 1.358 7 0.655 6 4.083 3 1.562 5 0.636 7 4.492 8 1.754 5 0.573 0 5.670 9 1.509 3 0.673 5 4.254 8 1.748 3 0.607 3 5.709 3 1.622 6 0.617 0 4.696 3 1.755 4 0.617 4 5.568 2 1.628 2 0.672 2 4.776 9 1.759 5 0.631 5 5.727 1 1.576 0 0.680 5 4.804 7 1.776 5 0.632 8 5.710 6 -
[1] CHIU H C, LU X, ZHOU J, et al. Capacity fade mechanism of Li4Ti5O12 nanosheet anode[J]. Advanced Energy Materials, 2017, 7(5):1601825/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/aenm.201601825
[2] LU X, GU L, HU Y S, et al. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode[J]. Journal of the American Chemical Society, 2015, 137(4):1581-1586. doi: 10.1021/ja5115562
[3] LU X, ZHAO L, HE X, et al. Lithium storage in Li4Ti5O12 spinel:the full static picture from electron microscopy[J]. Advanced Materials, 2012, 24:3233-3238. doi: 10.1002/adma.201200450
[4] HE Y B, LIU M, HUANG Z D, et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. Journal of Power Sources, 2013, 239:269-276. doi: 10.1016/j.jpowsour.2013.03.141
[5] MENG T, LI B, HU L, et al. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage[J]. Small Methods, 2019, 3(10):1900185/1-11.
[6] SONG H, YUN S W, CHUN H H, et al. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(12):9903-9913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da1e562912e021975473f335c50970c2
[7] ZHANG H, DENG Q, MOU C, et al. Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 239:538-545. doi: 10.1016/j.jpowsour.2013.03.013
[8] DESCHANVRES A, RAVEAU B, SEKKAL Z. Mise en evidence et etude cristallographique dune nouvelle solution solide de type spinelle Li1+xTi2-xO4 0≤x≤0.333[J]. Materials Research Bulletin, 1971, 6(8):699-704. doi: 10.1016/0025-5408(71)90103-6
[9] CHIU H C, LU X, ZHOU J, et al. Annealing-regulated elimination of residual strain-induced structural relaxation for stable high-power Li4Ti5O12 nanosheet anodes[J]. Nano Energy, 2017, 32:533-541. doi: 10.1016/j.nanoen.2016.12.063
[10] SUN Y, ZHAO L, PAN H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications, 2013, 4:1870/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db22fac61517def8fa83dcebe7797ac2
[11] COLBOW K, DAHN J, HAERING R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4[J]. Journal of Power Sources, 1989, 26:397-402. doi: 10.1016/0378-7753(89)80152-1
[12] SCHARNER S, WEPPNER W, SCHMID-BEURMANN P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel[J]. Journal of the Electrochemical Society, 1999, 146(3):857-861. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be3cfa2f259ca8215ef42b48db223bca
[13] SCHMIDT W, BOTTKE P, STERNAD M, et al. Small change great effect:steep increase of Li ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion[J]. Chemistry of Materials, 2015, 27(5):1740-1750. doi: 10.1021/cm504564k
[14] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5):1431-1435. http://www.researchgate.net/publication/280685274_Zero-strain_insertion_material_of_LiLi13Ti53Ti53O4_for_rechargeable_lithium_cells
[15] LIU H, ZHU Z, HUANG J, et al. Elucidating the limit of Li insertion into the spinel Li4Ti5O12[J]. ACS Materials Letters, 2019, 1(1):96-102. doi: 10.1021/acsmaterialslett.9b00099
[16] ALDON L, KUBIAK P, WOMES M, et al. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel[J]. Chemistry of Materials, 2004, 16(26):5721-5725. doi: 10.1021/cm0488837
[17] COLIN J F, GODBOLE V, NOVÁK P. In situ neutron diffraction study of Li insertion in Li4Ti5O12[J]. Electrochemistry Communications, 2010, 12(6):804-807. doi: 10.1016/j.elecom.2010.03.038
[18] TAKAMI N, HOSHINA K, INAGAKI H. Lithium diffusion in Li4/3Ti5/3O4 particles during insertion and extraction[J]. Journal of the Electrochemical Society, 2011, 158(6):A725-A730. doi: 10.1149/1.3574037
[19] LU W, BELHAROUAK I, LIU J, et al. Electrochemical and thermal investigation of Li3Ti5/3O4 spinel[J]. Journal of Electrochemistry Society, 2007, 154(2):A114-A118. doi: 10.1149/1.2402117
[20] FINDLAY S, SHIBATA N, SAWADA H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy[J]. Applied Physics Letters, 2009, 95(19):191913/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8c220db6cfa4d3da4c1d49e7dd7da6f
[21] PANG W K, PETERSON V K, SHARMA N, et al. Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction[J]. Chemistry of Materials, 2014, 26(7):2318-2326. doi: 10.1021/cm5002779
[22] ZHANG W, TOPSAKAL M, CAMA C, et al. Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints[J]. Journal of the American Chemical Society, 2017, 139(46):16591-16603. doi: 10.1021/jacs.7b07628
[23] WAGEMAKER M, SIMON D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12[J]. Advanced Materials, 2006, 18(23):3169-3173. doi: 10.1002/adma.200601636
[24] ZIEBARTH B, KLINSMANN M, ECKL T, et al. Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles[J]. Physical Review B, 2014, 89(17):174301/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a36fb038c5996b63ff7f69c1ec535746
[25] WAGEMAKER M, VAN ECK E R, KENTGENS A P, et al. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12[J]. The Journal of Physical Chemistry B, 2009, 113(1):224-230. doi: 10.1021/jp8073706
[26] GANAPATHY S, VASILEIADIS A, HERINGA J R, et al. The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+xTi5O12[J]. Advanced Energy Materials, 2017, 7(9):1601781/1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c44ca9913ceb604d3e8d4d1d611117c
[27] ZHANG W, SEO D H, CHEN T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367:1030-1034. doi: 10.1126/science.aax3520
[28] WEN Y, CHEN X, LU X, et al. Interface charges boosted ultrafast lithiation in Li4Ti5O12 revealed by in-situ electron holography[J]. Journal of Energy Chemistry, 2018, 27(5):1397-1401. doi: 10.1016/j.jechem.2018.02.019
[29] SHAO-HORN Y, CROGUENNEC L, DELMAS C, et al. Atomic resolution of lithium ions in LiCoO2[J]. Nature Materials, 2003, 2(7):464-467. doi: 10.1038/nmat922
[30] CHEN C, VAUGHEY J, JANSEN A N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(1):A102-A104.
[31] YOUNG D, RANSIL A, AMIN R, et al. Electronic conductivity in the Li4/3Ti5/3O4-Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode[J]. Advanced Energy Materials, 2013, 3(9):1125-1129. doi: 10.1002/aenm.201300134
[32] OUYANG C, ZHONG Z, LEI M. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel[J]. Electrochemistry Communications, 2007, 9(5):1107-1112. doi: 10.1016/j.elecom.2007.01.013
[33] TSAI P C, HSU W D, LIN S K. Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A439-A444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8764c71484ac85686520747b270c6433
[34] VERDE M G, BAGGETTO L, BALKE N, et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016, 10(4):4312-4321. doi: 10.1021/acsnano.5b07875
[35] 卢侠, 李泓.锂电池基础科学问题(Ⅱ):电池材料缺陷化学[J].储能科学与技术, 2013(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010 LU X, LI H. Fundamental scientific aspects of lithium batteries(Ⅱ):defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010
[36] LIU D, OUYANG C, SHU J, et al. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12[J]. Physica Status Solidi B, 2006, 243(8):1835-1841. doi: 10.1002/pssb.200541404
[37] ZHANG Q, ZHANG S, NING F, et al. Calcium doping of lithium titanium oxide nanospheres:a combined first-principles and experimental study[J]. Energy Technology, 2017, 5(4):539-543. doi: 10.1002/ente.201600371
[38] WOLFENSTINE J, LEE U, ALLEN J. Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2006, 154:287-289. doi: 10.1016/j.jpowsour.2005.12.044
[39] YAO Z, YIN H, ZHOU L, et al. Ti3+ Self-doped Li4Ti5O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage[J]. Small, 2019, 15(50):1905296/1-7.
[40] KICK M, GROSU C, SCHUDERER M, et al. Mobile small polarons explain conductivity in lithium titanium oxide battery electrodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(7):2535-2540. doi: 10.1021/acs.jpclett.0c00568
[41] 郑浩, 高健, 王少飞, 等.锂电池基础科学问题(Ⅵ):离子在固体中的输运[J].储能科学与技术, 2013, 2(6):620-635. ZHENG H, GAO J, WANG S F, et al.Fundamental scientific aspects of lithium batteries(Ⅵ):ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6):620-635.
[42] CHEN Y, OUYANG C, SONG L, et al. Lithium ion diffusion in Li4+xTi5O12:From ab initio studies[J]. Electrochimica Acta, 2011, 56(17):6084-6088. doi: 10.1016/j.electacta.2011.04.077
[43] WILKENING M, IWANIAK W, HEINE J, et al. Microscopic Li self-diffusion parameters in the lithiated anode material Li4+ xTi5O12 (0≤x≤3) measured by 7 Li solid state NMR[J]. Physical Chemistry Chemical Physics, 2007, 9(47):6199-6202. doi: 10.1039/b713311a
[44] WILKENING M, AMADE R, IWANIAK W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12:a comparison of results from solid state NMR and impedance spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(10):1239-1246. doi: 10.1039/B616269J
[45] HAIN H, SCHEUERMANN M, HEINZMANN R, et al. Study of local structure and Li dynamics in Li4+xTi5O12 (0≤x≤5) using 6Li and 7Li NMR spectroscopy[J]. Solid State Nuclear Magnetic Resonance, 2012, 42:9-16. doi: 10.1016/j.ssnmr.2011.11.007
[46] VIJAYAKUMAR M, KERISIT S, ROSSO K M, et al. Lithium diffusion in Li4Ti5O12 at high temperatures[J]. Journal of Power Sources, 2011, 196:2211-2220. doi: 10.1016/j.jpowsour.2010.09.060
[47] RHO Y H, KANAMURA K. Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method[J]. Journal of Solid State Chemistry, 2004, 177(6):2094-2100. doi: 10.1016/j.jssc.2004.02.018
[48] LIN C, DING B, XIN Y, et al. Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery:synergistic effect of doping and compositing[J]. Journal of Power Sources, 2014, 248:1034-1041. doi: 10.1016/j.jpowsour.2013.09.120
[49] HUANG Y, HE Y, SHENG H, et al. Li-ion battery material under high pressure:amorphization and enhanced conductivity of Li4Ti5O12[J]. National Science Review, 2018, 6(2):239-246.
[50] MENG F, ZHANG Q, GAO A, et al. Synergistic O2-/Li+ dual ion transportation at atomic scale[J]. Research, 2019, 2019:9087386/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yj-e201901002
[51] WANG Y Q, GU L, GUO Y G, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery[J]. Journal of the American Chemical Society, 2012, 134(18):7874-7879. doi: 10.1021/ja301266w
[52] BORGHOLS W, WAGEMAKER M, LAFONT U, et al. Size effects in the Li4+xTi5O12 spinel[J]. Journal of the American Chemical Society, 2009, 131(49):17786-17792. doi: 10.1021/ja902423e
[53] GANAPATHY S, WAGEMAKER M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion[J]. ACS Nano, 2012, 6(10):8702-8712. doi: 10.1021/nn302278m
[54] WU K, YANG J, ZHANG Y, et al. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle[J]. Journal of Applied Electrochemistry, 2012, 42(12):989-995. doi: 10.1007/s10800-012-0442-0
[55] BELHAROUAK I, KOENIG G M, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8):A1165-A1170. doi: 10.1149/2.013208jes
[56] HE Y B, LI B, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 2:913/1-9.
[57] LIU W, LIU H, WANG Q, et al. Gas swelling behaviour at different stages in Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 pouch cells[J]. Journal of Power Sources, 2017, 369:103-110. doi: 10.1016/j.jpowsour.2017.10.001
[58] ZHAO L, PAN H, HU Y, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B, 2012, 21(2):028201/1-4.
[59] YU X, PAN H, WAN W, et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters, 2013, 13(10):4721-4727. doi: 10.1021/nl402263g
-
期刊类型引用(3)
1. 苏丹,明银安,陈琳,李阳,文志潘,王营茹. 喹诺酮类抗生素的检测和吸附处理研究进展. 净水技术. 2023(05): 5-12+177 . 百度学术
2. 陈金垒,王嘉豪,黄雪君,苏善煜,龚佳昕. 纳米矿晶对氧氟沙星的吸附性能研究. 山东化工. 2022(11): 210-212 . 百度学术
3. 杜悦矜,曾丽璇,黄家全,李美慧. 天然沸石对水中左氧氟沙星的吸附及其影响因素. 华南师范大学学报(自然科学版). 2020(06): 39-44 . 百度学术
其他类型引用(5)