5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质

王健, 应晓, 刘海洋

王健, 应晓, 刘海洋. 5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 31-40. DOI: 10.6054/j.jscnun.2020024
引用本文: 王健, 应晓, 刘海洋. 5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 31-40. DOI: 10.6054/j.jscnun.2020024
WANG Jian, YING Xiao, LIU Haiyang. Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 31-40. DOI: 10.6054/j.jscnun.2020024
Citation: WANG Jian, YING Xiao, LIU Haiyang. Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 31-40. DOI: 10.6054/j.jscnun.2020024

5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质

基金项目: 

国家自然科学基金项目 21671068

详细信息
    通讯作者:

    应晓, 副教授, Email:yingxiao@scut.edu.cn

    刘海洋, 教授, Email:chhyliu@scut.edu.cn

  • 中图分类号: O641

Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole

  • 摘要: 运用密度泛函理论(DFT)研究了5, 15-二(五氟苯基)-10-(2-氨基苯基)咔咯(F10Cor)及其金属(Mn、Cu、Ga)配位化合物的几何结构、电子吸收光谱和二阶非线性光学(NLO)性质.利用态求和的方法在CAM-B3LYP/aug-cc-pVDZ水平计算了咔咯配位化合物的二阶NLO系数(β0).计算结果表明:F10Cor及配位化合物的静态二阶NLO系数β0的大小顺序为F10CorCu(57.75×10-30 esu)、F10Cor(37.92×10-30 esu)、F10CorMn(27.10×10-30 esu)、F10CorGa(20.00×10-30 esu),这些咔咯配位化合物的二阶非线性光学响应主要源自于βy分量的贡献. F10CorCu的二阶NLO响应主要来源于β-HOMO-1→β-LUMO轨道跃迁,表现为2-氨基苯基与咔咯大环之间的配体内电荷转移(ILCT)跃迁.动态第一超极化率计算结果表明,在波长为1 907 nm入射光照下,F10Cor及金属配位化合物均未表现出强的色散效应,其动态二阶NLO系数(β1 907 nm)约为静态值β0的2倍,顺序为F10CorCu(103.94×10-30 esu)、F10Cor (60.60×10-30 esu)、F10CorMn(48.75×10-30 esu)、F10CorGa(34.39×10-30 esu).
    Abstract: The geometric and electronic absorption spectra and second-order nonlinear optical (NLO) properties of 5, 15-bis(pentafluorophenyl)-10-(2-aminophenyl) corrole (F10Cor) and metal corrole (Mn, Cu, Ga) complexes have been investigated with density functional theory (DFT) calculations. The second-order NLO coefficients (β0) of corrole complexes were calculated on the CAM-B3LYP/aug-cc-pVDZ level using the sum-over-states (SOS) method. The calculated results showed that the static second-order NLO coefficients β0 for F10Cor and complexes followed an order of F10CorCu(57.75×10-30 esu), F10Cor(37.92×10-30 esu), F10CorMn(27.10×10-30 esu) and F10CorGa(20.00×10-30 esu), the second-order NLO responses of these compounds were mainly contributed by the βy component. The second-order NLO responses of the F10CorCu complex were derived from the β-HOMO-1 to β-LUMO transition, exhibiting intraligand charge transfer (ILCT) transition between 2-aminophenyl and corrole macrocycle. The calculations of the dynamic first hyperpolarizability indicated that F10Cor and all metal complexes have not shown strong dispersion effect under the influence of incident wavelength of 1 907 nm. The dynamic second-order NLO coefficients (β1 907 nm) were about twice as large as static β0 values, following an order of F10CorCu (103.94×10-30 esu), F10Cor (60.60×10-30 esu), F10CorMn(48.75×10-30 esu) and F10CorGa(34.39×10-30 esu).
  • 图  1   5, 15-二(五氟苯基)-10-(2-氨基苯基)咔咯(F10Cor)及金属配位化合物(F10CorM, M=Mn、Cu、Ga)的分子结构

    Figure  1.   The molecular structures of 5, 15-bis(pentafluorophenyl)-10-(2-aminophenyl) corrole (F10Cor) and metal corrole (Mn, Cu, Ga) complexes

    图  2   F10Cor及金属配位化合物的前线分子轨道

    Figure  2.   The frontier molecular orbitals of F10Cor and metal complexes

    图  3   咔咯静态第一超极化率(β0)与激发态数的收敛关系

    Figure  3.   The convergent behavior of static first hyperpolarizabilities (β0) with the number of excited states for corroles

    图  4   咔咯中对静态第一超极化率(β0)有重要贡献的激发态空穴(蓝色)和电子(绿色)分布

    Figure  4.   The hole (blue) and electron (green) distribution of major contribution excited states to static first hyperpolarizability (β0) for corroles

    图  5   计算所得咔咯动态第一超极化率βw的色散行为

    Figure  5.   Calculated dispersion behavior of dynamic first hyperpolarizability βw for corroles

    图  6   咔咯动态第一超极化率(β1 907 nm)与激发态数目之间的收敛关系

    Figure  6.   The convergent behavior of dynamic first hyperpolarizabilities (β1 907 nm) with the number of excited states for corroles

    表  1   F10Cor和F10CorM(M =Mn, Cu, Ga)的几何结构参数及Mulliken电荷

    Table  1   The geometric structure parameters of F10Cor and F10CorM(M =Mn, Cu, Ga) and Mulliken charge

    参数 F10Cor F10CorMn F10CorCu F10CorGa
    M—N1键长/nm - 0.190 5 0.192 1 0.192 4
    M—N2键长/nm - 0.191 5 0.192 4 0.191 0
    M—N3键长/nm - 0.191 5 0.192 4 0.191 1
    M—N4键长/nm - 0.190 6 0.192 2 0.192 5
    C1—C19键长/nm 0.142 5 0.142 3 0.145 4 0.143 0
    ∠C2-1-19-18/(°) 17.624 5.684 4.243 3.715
    金属电荷数(e) - 1.153 0.541 1.026
    配体电荷数(e) - -1.153 -0.541 -1.026
    下载: 导出CSV

    表  2   计算所得咔咯最大吸收波长(λmax)、振子强度(f)、基态与激发态偶极矩之差(Δμ)、跃迁能(ΔE)和主要跃迁形式

    Table  2   The calculated maximum absorption wavelength (λmax/nm), oscillator strengths (f), difference in dipole moments between ground and excited state(Δμ), transition energy (ΔE) and major transition forms of corroles

    化合物 λmax/nm f Δμ/D ΔE/eV β0 主要跃迁方式
    F10Cor 370 1.136 1.006 3.350 2.082 HOMO-1→LUMO+1(62%), HOMO→LUMO(21%)
    F10CorMn 349 0.481 0.812 3.552 0.596 β-HOMO→β-LUMO+5(24%), α-HOMO→α-LUMO+1(16%)
    F10CorCu 347 0.422 0.960 3.577 0.601 β-HOMO→β-LUMO+2(64%), α-HUMO→α-LUMO+1(14%)
    F10CorGa 362 1.216 0.080 3.421 0.164 HOMO-1→LUMO+1(64%), HOMO→LUMO(30%)
      注:β0表示双能级模型计算值(×10-30 esu),αβ指分子轨道的αβ自旋态.
    下载: 导出CSV

    表  3   咔咯的基态偶极矩(μ0)及其分量

    Table  3   The ground state dipole moments (μ0) and components of corroles

    化合物 偶极矩/D
    μx μy μz μ0
    F10Cor 1.53 2.15 -0.79 2.75
    F10CorMn 0.90 0.75 0.71 1.37
    F10CorCu 0.99 1.21 0.54 1.65
    F10CorGa 0.90 1.14 0.68 1.60
    下载: 导出CSV

    表  4   咔咯的静态极化率α0及其分量

    Table  4   The static polarizabilities α0 and components of corroles

    化合物 极化率/(×10-25 esu)
    αxx αyy αzz α0 Δα
    F10Cor 588 394 18 333(348) 502
    F10CorMn 440 329 2 256(270) 394
    F10CorCu 428 372 3 268(280) 400
    F10CorGa 493 372 16 293(305) 430
      注:括号中的数据是动态极化率α1 907 nm.
    下载: 导出CSV

    表  5   咔咯静态第一超极化率β0及其分量

    Table  5   The static first hyperpolarizability β0 and corresponding components of corroles

    化合物 第一超极化率/(×10-30 esu)
    βx βy βz β0 β0(CPKS)
    F10Cor -6.02 37.35 2.61 37.92(60.60) 23.45
    F10CorMn -2.30 27.00 0.70 27.10(48.75) 20.89
    F10CorCu -7.45 57.27 0.39 57.75(103.94) 33.89
    F10CorGa -2.33 19.86 0.16 20.00(34.39) 16.15
      注:括号中的数据是动态第一超极化率β1 907 nmβ0(CPKS)采用CPKS方法在CAM-B3LYP/aug-cc-pVDZ水平下计算.
    下载: 导出CSV

    表  6   计算所得咔咯主要激发态序号、组态系数、主要贡献和对应分子轨道跃迁

    Table  6   The calculated major excited states, configuration coefficients, contribution and corresponding MO transitions of corroles

    化合物 激发态序号 组态系数 主要贡献率/% 分子轨道跃迁
    F10Cor 3 0.526 52 55 HOMO→LUMO+1
    0.410 93 34 HOMO-1→LUMO
    F10CorMn 22 0.593 16 35 β-HOMO-2→β-LUMO
    23 0.489 71 24 β-HOMO→β-LUMO+5
    24 0.449 63 20 β-HOMO-2→β-LUMO
    25 0.465 16 22 β-HOMO-2→β-LUMO+1
    26 0.611 33 37 β-HOMO-2→β-LUMO+1
    F10CorCu 6 0.703 04 49 β-HOMO-1→β-LUMO
    21 0.313 66 10 α-HOMO-3→α-LUMO+1
    26 0.802 22 64 β-HOMO→β-LUMO+2
    F10CorGa 3 0.565 36 64 HOMO-1→LUMO+1
    0.385 72 30 HOMO→LUMO
    下载: 导出CSV
  • [1]

    AUTERE A, JUSSILA H, DAI Y, et al. Nonlinear optics with 2D layered materials[J]. Advanced Materials, 2018, 30(24):1705963/1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adma.201705963

    [2]

    LUO M, LIANG F, SONG Y, et al. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M=Pb, Sn), containing flexible two-dimensional[B6O12F6] single layers with widely divergent second harmonic generation effects[J]. Journal of the American Chemical Society, 2018, 140(22):6814-6817. doi: 10.1039/C8NR00471D

    [3]

    MUTAILIPU M, ZHANG M, ZHANG B, et al. SrB5O7F3 Functionalized with[B5O9F3]6- chromophores:accelerating the rational design of deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(21):6095-6099. doi: 10.1002/anie.201802058

    [4]

    WANG X, WANG Y, ZHANG B, et al. CsB4O6F:a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 2017, 56(45):14119-14123.

    [5] 顾凤龙, 田思, 彭亮. (C9H8N6O2)n(n=1, 2, 3, 4)分子体系非线性光学的理论研究[J].华南师范大学学报(自然科学版), 2013, 45(6):105-112. doi: 10.6054/j.jscnun.2013.09.013

    GU F L, TIAN S, PENG L, Theoretical studies on NLO properties of (C9H8N6O2)n(n=1, 2, 3, 4)[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(6):105-112. doi: 10.6054/j.jscnun.2013.09.013

    [6]

    MEDISHETTY R, ZAREBA J K, MAYER D, et al. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks[J]. Chemical Society Reviews, 2017, 46(16):4976-5004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d321cd88b4538434e8c60d6ca48f650

    [7]

    MUHAMMAD S, Al-SEHEMI A G, SU Z, et al. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones[J]. Journal of Molecular Graphics and Modelling, 2017, 72:58-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d589c57a314312a5d2f77403880940c9

    [8]

    LI X, WANG H Q, YE J T, et al. Second-order NLO properties of bis-cyclometalated iridium(Ⅲ) complexes:substituent effect and redox switch[J]. Journal of Molecular Graphics and Modelling, 2019, 89:131-138. https://www.sciencedirect.com/science/article/pii/S1093326319300610

    [9]

    SUSLICK K S, CHEN C T, MEREDITH G R, et al. Push-pull porphyrins as nonlinear optical materials[J]. Journal of the American Chemical Society, 1992, 114(17):6928-6930. http://cn.bing.com/academic/profile?id=d03c7457dacf89d4679719f235f1b548&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    SEN A, RAY P C, DAS P K, et al. Metalloporphyrins for quadratic nonlinear optics[J]. The Journal of Physical Chemistry, 1996, 100(50):19611-19613. http://cn.bing.com/academic/profile?id=f02348803d8d315232c34a8ad4ce2d23&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    HU Z, SUN Z, SUN H T. Design of zinc porphyrin-perylene dⅡmide donor-bridge-acceptor chromophores for large second-order nonlinear optical response:a theoretical exploration[J]. International Journal of Quantum Chemistry, 2018, 118(10):e25536/1-10.

    [12] 徐艳, 章小慧, 徐志广, 等.取代基和配体的负离子效应对(TPFC)Mn(Ⅴ)O轴向配位作用的影响[J].华南师范大学学报(自然科学版), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006

    XU Y, ZHANG X H, XU Z G, et al. Effects of substituents and anionic ligands for axial coordination of manganese(Ⅴ)-Oxo corrole complex[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006

    [13]

    YING X, LONG X Y, MAHMOOD M H R, et al. Second order nonlinear optical properties of corroles:experimental and theoretical investigations[J]. Journal of Porphyrins and Phthalocyanines, 2012, 16(12):1276-1284. http://cn.bing.com/academic/profile?id=e293fa79c302843eed7517f6d0cd7a9f&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    SANKAR J, RATH H, PRABHURAJA V, et al. Meso-meso-linked corrole dimers with modified cores:synthesis, characterization, and properties[J]. Chemistry-A European Journal, 2007, 13(1):105-114. http://cn.bing.com/academic/profile?id=175361aed4ee05e803313ac300515010&encoded=0&v=paper_preview&mkt=zh-cn

    [15]

    SRIKANTH M, SASTRY G N, SOUJANYA Y. Molecular design of corrole-based D-π-A sensitizers for dye-sensitized solar cell applications[J]. International Journal of Quantum Chemistry, 2015, 115(12):745-752. doi: 10.1002/qua.24888

    [16]

    KURTZ H A, STEWART J J P, DIETER K M. Calculation of the nonlinear optical properties of molecules[J]. Journal of Computational Chemistry, 1990, 11(1):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/jcc.540110110

    [17]

    BUCKINGHAM A D. Permanent and induced molecular moments and long-range intermolecular forces[J]. Advances in Chemical Physics:Intermolecular Forces, 1967, 12:107-142. doi: 10.1002-9780470143582.ch2/

    [18]

    STEPHENS P J, DEVLIN F J, CHABALOWSKI C F N, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45):11623-11627. http://cn.bing.com/academic/profile?id=7dcbc76acf8b8c770cc107c8a3eaeaea&encoded=0&v=paper_preview&mkt=zh-cn

    [19]

    LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2):785-789. http://cn.bing.com/academic/profile?id=49e214ce2ba0dad5e22c141721a3d0e1&encoded=0&v=paper_preview&mkt=zh-cn

    [20]

    HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3):213-222. http://cn.bing.com/academic/profile?id=f67c770dde9c8dca55a15501d1b8d571&encoded=0&v=paper_preview&mkt=zh-cn

    [21]

    ANDRAE D, HAEUSSERMANN U, DOLG M, et al. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements[J]. Theoretica Chimica Acta, 1990, 77(2):123-141. doi: 10.1007%2FBF01112848

    [22]

    YANAI T, TEW D P, HANDY N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chemical Physics Letters, 2004, 393(1/2/3):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97a6cc6c411a8d778b545cc2072a03db

    [23]

    LU S I. Assessment of the global and range-separated hybrids for computing the dynamic second-order hyperpolarizability of solution-phase organic molecules[J]. Theoretical Chemistry Accounts, 2014, 133(2):1439/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27f7f34fbbf547ee8bd921472993fee9

    [24]

    HICKEY A L, ROWLEY C N. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities[J]. The Journal of Physical Chemistry A, 2014, 118(20):3678-3687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e38c4152cf8f6940f03d1788b6a9f3c0

    [25]

    SASAGANE K, AIGA F, ITOH R. Higher-order response theory based on the quasienergy derivatives:the derivation of the frequency-dependent polarizabilities and hyperpolarizabilities[J]. The Journal of Chemical Physics, 1993, 99(5):3738-3778. http://cn.bing.com/academic/profile?id=d5fc2c36c74648ba56e762c8ae629abe&encoded=0&v=paper_preview&mkt=zh-cn

    [26]

    RAPPOPORT D, FURCHE F. Property-optimized Gaussian basis sets for molecular response calculations[J]. The Journal of Chemical Physics, 2010, 133(13):134105/1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bf3eab698c6e9f3e49c2cf8f662df85

    [27]

    BALABANOV N B, PETERSON K A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn[J]. The Journal of Chemical Physics, 2005, 123(6):064107/1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b132e4444e12d06c2829f14ebd26713

    [28]

    KENDALL R A, DUNNING JR T H, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9):6796-6806. http://cn.bing.com/academic/profile?id=7982ccdd14fa07f45b109a411745b43e&encoded=0&v=paper_preview&mkt=zh-cn

    [29]

    FRISH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09[CP]. Revision D.01. Gaussian Inc: Wallingford, CT, 2013.

    [30]

    LU T, CHEN F W. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592. http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr201205006

    [31]

    HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/jdq200504018

    [32]

    GHOSH A, JYNGE K. Molecular structures and energetics of corrole isomers:a comprehensive local density functional theoretical study[J]. Chemistry-A European Journal, 1997, 3(5):823-833. http://cn.bing.com/academic/profile?id=d0382888aec6829fc08901336c5ba2a0&encoded=0&v=paper_preview&mkt=zh-cn

    [33]

    CAI Z L, CROSSLEY M J, REIMERS J R, et al. Density functional theory for charge transfer:the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations[J]. The Journal of Physical Chemistry B, 2006, 110(31):15624-15632. http://cn.bing.com/academic/profile?id=7940586e3a4007c283edace656251164&encoded=0&v=paper_preview&mkt=zh-cn

    [34]

    LI M Z, ZHU W H, LIANG X. Synthesis and electronic structure of A2B type halogen atoms substituted H3-triarylcorroles[J]. Chinese Journal of Structure Chemistry, 2017(3):367-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jghx201703001

    [35]

    JACQUEMIN D, PERPETE E A, SCUSERIA G E, et al. TD-DFT performance for the visible absorption spectra of organic dyes:conventional versus long-range hybrids[J]. Journal of Chemical Theory and Computation, 2008, 4(1):123-135. http://cn.bing.com/academic/profile?id=67092db978f33772c6a6b1b9468c0349&encoded=0&v=paper_preview&mkt=zh-cn

    [36]

    LÓPEZ S F, MEZA M P, HOYOS F T. Study of the nonlinear optical properties of 4-nitroaniline type compounds by density functional theory calculations:towards new NLO materials[J]. Computational and Theoretical Chemistry, 2018, 1133:25-32. http://cn.bing.com/academic/profile?id=de40b7bdbae5438d370a3563347b4db5&encoded=0&v=paper_preview&mkt=zh-cn

    [37]

    LU T. Multiwfn Manual, version 3.6(dev)[CP]. Section 3.21.1. http://sobereva.com/multiwfn. 2018-08-30.

    [38]

    CHEN S, ULLAH N, ZHANG R. Exciton self-trapping in sp2 carbon nanostructures induced by edge ether groups[J]. The Journal of Physical Chemistry Letters, 2018, 9(17):4857-4864. doi: 10.1021/acs.jpclett.8b01972

    [39] 康慧敏, 王洪强, 王慧莹, 等.卟啉-碳硼烷-硼亚甲基二吡咯三元化合物二阶非线性光学性质的理论研究[J].高等学校化学学报, 2019, 40(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201905015

    KANG H M, WANG H Q, WANG H Y, et al. Theoretical study on the second-order nonlinear optical properties of a porphyrin-o-carborane-boron-dipyrromethene triad compound[J]. Chemical Journal of Chinese Universities, 2019, 40(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201905015

  • 期刊类型引用(1)

    1. 姚琴, 谢柏臻, 裴一花. 聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe_3O_4的合成及其基因转染应用. 华南师范大学学报(自然科学版). 2018(06): 48-53 . 百度学术

    其他类型引用(0)

图(6)  /  表(6)
计量
  • 文章访问数:  2846
  • HTML全文浏览量:  1639
  • PDF下载量:  62
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-06-23
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回