留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质

王健 应晓 刘海洋

王健, 应晓, 刘海洋. 5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024
引用本文: 王健, 应晓, 刘海洋. 5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024
WANG Jian, YING Xiao, LIU Haiyang. Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024
Citation: WANG Jian, YING Xiao, LIU Haiyang. Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024

5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质

doi: 10.6054/j.jscnun.2020024
基金项目: 

国家自然科学基金项目 21671068

详细信息
    通讯作者:

    应晓, 副教授, Email:yingxiao@scut.edu.cn

    刘海洋, 教授, Email:chhyliu@scut.edu.cn

  • 中图分类号: O641

Second-Order Nonlinear Optical Properties of 5, 15-Bis(pentafluorophenyl)-10-(2-aminophenyl) Metal Corrole

  • 摘要: 运用密度泛函理论(DFT)研究了5, 15-二(五氟苯基)-10-(2-氨基苯基)咔咯(F10Cor)及其金属(Mn、Cu、Ga)配位化合物的几何结构、电子吸收光谱和二阶非线性光学(NLO)性质.利用态求和的方法在CAM-B3LYP/aug-cc-pVDZ水平计算了咔咯配位化合物的二阶NLO系数(β0).计算结果表明:F10Cor及配位化合物的静态二阶NLO系数β0的大小顺序为F10CorCu(57.75×10-30 esu)、F10Cor(37.92×10-30 esu)、F10CorMn(27.10×10-30 esu)、F10CorGa(20.00×10-30 esu),这些咔咯配位化合物的二阶非线性光学响应主要源自于βy分量的贡献. F10CorCu的二阶NLO响应主要来源于β-HOMO-1→β-LUMO轨道跃迁,表现为2-氨基苯基与咔咯大环之间的配体内电荷转移(ILCT)跃迁.动态第一超极化率计算结果表明,在波长为1 907 nm入射光照下,F10Cor及金属配位化合物均未表现出强的色散效应,其动态二阶NLO系数(β1 907 nm)约为静态值β0的2倍,顺序为F10CorCu(103.94×10-30 esu)、F10Cor (60.60×10-30 esu)、F10CorMn(48.75×10-30 esu)、F10CorGa(34.39×10-30 esu).
  • 图  1  5, 15-二(五氟苯基)-10-(2-氨基苯基)咔咯(F10Cor)及金属配位化合物(F10CorM, M=Mn、Cu、Ga)的分子结构

    Figure  1.  The molecular structures of 5, 15-bis(pentafluorophenyl)-10-(2-aminophenyl) corrole (F10Cor) and metal corrole (Mn, Cu, Ga) complexes

    图  2  F10Cor及金属配位化合物的前线分子轨道

    Figure  2.  The frontier molecular orbitals of F10Cor and metal complexes

    图  3  咔咯静态第一超极化率(β0)与激发态数的收敛关系

    Figure  3.  The convergent behavior of static first hyperpolarizabilities (β0) with the number of excited states for corroles

    图  4  咔咯中对静态第一超极化率(β0)有重要贡献的激发态空穴(蓝色)和电子(绿色)分布

    Figure  4.  The hole (blue) and electron (green) distribution of major contribution excited states to static first hyperpolarizability (β0) for corroles

    图  5  计算所得咔咯动态第一超极化率βw的色散行为

    Figure  5.  Calculated dispersion behavior of dynamic first hyperpolarizability βw for corroles

    图  6  咔咯动态第一超极化率(β1 907 nm)与激发态数目之间的收敛关系

    Figure  6.  The convergent behavior of dynamic first hyperpolarizabilities (β1 907 nm) with the number of excited states for corroles

    表  1  F10Cor和F10CorM(M =Mn, Cu, Ga)的几何结构参数及Mulliken电荷

    Table  1.   The geometric structure parameters of F10Cor and F10CorM(M =Mn, Cu, Ga) and Mulliken charge

    参数 F10Cor F10CorMn F10CorCu F10CorGa
    M—N1键长/nm - 0.190 5 0.192 1 0.192 4
    M—N2键长/nm - 0.191 5 0.192 4 0.191 0
    M—N3键长/nm - 0.191 5 0.192 4 0.191 1
    M—N4键长/nm - 0.190 6 0.192 2 0.192 5
    C1—C19键长/nm 0.142 5 0.142 3 0.145 4 0.143 0
    ∠C2-1-19-18/(°) 17.624 5.684 4.243 3.715
    金属电荷数(e) - 1.153 0.541 1.026
    配体电荷数(e) - -1.153 -0.541 -1.026
    下载: 导出CSV

    表  2  计算所得咔咯最大吸收波长(λmax)、振子强度(f)、基态与激发态偶极矩之差(Δμ)、跃迁能(ΔE)和主要跃迁形式

    Table  2.   The calculated maximum absorption wavelength (λmax/nm), oscillator strengths (f), difference in dipole moments between ground and excited state(Δμ), transition energy (ΔE) and major transition forms of corroles

    化合物 λmax/nm f Δμ/D ΔE/eV β0 主要跃迁方式
    F10Cor 370 1.136 1.006 3.350 2.082 HOMO-1→LUMO+1(62%), HOMO→LUMO(21%)
    F10CorMn 349 0.481 0.812 3.552 0.596 β-HOMO→β-LUMO+5(24%), α-HOMO→α-LUMO+1(16%)
    F10CorCu 347 0.422 0.960 3.577 0.601 β-HOMO→β-LUMO+2(64%), α-HUMO→α-LUMO+1(14%)
    F10CorGa 362 1.216 0.080 3.421 0.164 HOMO-1→LUMO+1(64%), HOMO→LUMO(30%)
      注:β0表示双能级模型计算值(×10-30 esu),αβ指分子轨道的αβ自旋态.
    下载: 导出CSV

    表  3  咔咯的基态偶极矩(μ0)及其分量

    Table  3.   The ground state dipole moments (μ0) and components of corroles

    化合物 偶极矩/D
    μx μy μz μ0
    F10Cor 1.53 2.15 -0.79 2.75
    F10CorMn 0.90 0.75 0.71 1.37
    F10CorCu 0.99 1.21 0.54 1.65
    F10CorGa 0.90 1.14 0.68 1.60
    下载: 导出CSV

    表  4  咔咯的静态极化率α0及其分量

    Table  4.   The static polarizabilities α0 and components of corroles

    化合物 极化率/(×10-25 esu)
    αxx αyy αzz α0 Δα
    F10Cor 588 394 18 333(348) 502
    F10CorMn 440 329 2 256(270) 394
    F10CorCu 428 372 3 268(280) 400
    F10CorGa 493 372 16 293(305) 430
      注:括号中的数据是动态极化率α1 907 nm.
    下载: 导出CSV

    表  5  咔咯静态第一超极化率β0及其分量

    Table  5.   The static first hyperpolarizability β0 and corresponding components of corroles

    化合物 第一超极化率/(×10-30 esu)
    βx βy βz β0 β0(CPKS)
    F10Cor -6.02 37.35 2.61 37.92(60.60) 23.45
    F10CorMn -2.30 27.00 0.70 27.10(48.75) 20.89
    F10CorCu -7.45 57.27 0.39 57.75(103.94) 33.89
    F10CorGa -2.33 19.86 0.16 20.00(34.39) 16.15
      注:括号中的数据是动态第一超极化率β1 907 nmβ0(CPKS)采用CPKS方法在CAM-B3LYP/aug-cc-pVDZ水平下计算.
    下载: 导出CSV

    表  6  计算所得咔咯主要激发态序号、组态系数、主要贡献和对应分子轨道跃迁

    Table  6.   The calculated major excited states, configuration coefficients, contribution and corresponding MO transitions of corroles

    化合物 激发态序号 组态系数 主要贡献率/% 分子轨道跃迁
    F10Cor 3 0.526 52 55 HOMO→LUMO+1
    0.410 93 34 HOMO-1→LUMO
    F10CorMn 22 0.593 16 35 β-HOMO-2→β-LUMO
    23 0.489 71 24 β-HOMO→β-LUMO+5
    24 0.449 63 20 β-HOMO-2→β-LUMO
    25 0.465 16 22 β-HOMO-2→β-LUMO+1
    26 0.611 33 37 β-HOMO-2→β-LUMO+1
    F10CorCu 6 0.703 04 49 β-HOMO-1→β-LUMO
    21 0.313 66 10 α-HOMO-3→α-LUMO+1
    26 0.802 22 64 β-HOMO→β-LUMO+2
    F10CorGa 3 0.565 36 64 HOMO-1→LUMO+1
    0.385 72 30 HOMO→LUMO
    下载: 导出CSV
  • [1] AUTERE A, JUSSILA H, DAI Y, et al. Nonlinear optics with 2D layered materials[J]. Advanced Materials, 2018, 30(24):1705963/1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adma.201705963
    [2] LUO M, LIANG F, SONG Y, et al. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M=Pb, Sn), containing flexible two-dimensional[B6O12F6] single layers with widely divergent second harmonic generation effects[J]. Journal of the American Chemical Society, 2018, 140(22):6814-6817. doi: 10.1039/C8NR00471D
    [3] MUTAILIPU M, ZHANG M, ZHANG B, et al. SrB5O7F3 Functionalized with[B5O9F3]6- chromophores:accelerating the rational design of deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(21):6095-6099. doi: 10.1002/anie.201802058
    [4] WANG X, WANG Y, ZHANG B, et al. CsB4O6F:a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 2017, 56(45):14119-14123.
    [5] 顾凤龙, 田思, 彭亮. (C9H8N6O2)n(n=1, 2, 3, 4)分子体系非线性光学的理论研究[J].华南师范大学学报(自然科学版), 2013, 45(6):105-112. doi: 10.6054/j.jscnun.2013.09.013

    GU F L, TIAN S, PENG L, Theoretical studies on NLO properties of (C9H8N6O2)n(n=1, 2, 3, 4)[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(6):105-112. doi: 10.6054/j.jscnun.2013.09.013
    [6] MEDISHETTY R, ZAREBA J K, MAYER D, et al. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks[J]. Chemical Society Reviews, 2017, 46(16):4976-5004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d321cd88b4538434e8c60d6ca48f650
    [7] MUHAMMAD S, Al-SEHEMI A G, SU Z, et al. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones[J]. Journal of Molecular Graphics and Modelling, 2017, 72:58-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d589c57a314312a5d2f77403880940c9
    [8] LI X, WANG H Q, YE J T, et al. Second-order NLO properties of bis-cyclometalated iridium(Ⅲ) complexes:substituent effect and redox switch[J]. Journal of Molecular Graphics and Modelling, 2019, 89:131-138. https://www.sciencedirect.com/science/article/pii/S1093326319300610
    [9] SUSLICK K S, CHEN C T, MEREDITH G R, et al. Push-pull porphyrins as nonlinear optical materials[J]. Journal of the American Chemical Society, 1992, 114(17):6928-6930. http://cn.bing.com/academic/profile?id=d03c7457dacf89d4679719f235f1b548&encoded=0&v=paper_preview&mkt=zh-cn
    [10] SEN A, RAY P C, DAS P K, et al. Metalloporphyrins for quadratic nonlinear optics[J]. The Journal of Physical Chemistry, 1996, 100(50):19611-19613. http://cn.bing.com/academic/profile?id=f02348803d8d315232c34a8ad4ce2d23&encoded=0&v=paper_preview&mkt=zh-cn
    [11] HU Z, SUN Z, SUN H T. Design of zinc porphyrin-perylene dⅡmide donor-bridge-acceptor chromophores for large second-order nonlinear optical response:a theoretical exploration[J]. International Journal of Quantum Chemistry, 2018, 118(10):e25536/1-10.
    [12] 徐艳, 章小慧, 徐志广, 等.取代基和配体的负离子效应对(TPFC)Mn(Ⅴ)O轴向配位作用的影响[J].华南师范大学学报(自然科学版), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006

    XU Y, ZHANG X H, XU Z G, et al. Effects of substituents and anionic ligands for axial coordination of manganese(Ⅴ)-Oxo corrole complex[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006
    [13] YING X, LONG X Y, MAHMOOD M H R, et al. Second order nonlinear optical properties of corroles:experimental and theoretical investigations[J]. Journal of Porphyrins and Phthalocyanines, 2012, 16(12):1276-1284. http://cn.bing.com/academic/profile?id=e293fa79c302843eed7517f6d0cd7a9f&encoded=0&v=paper_preview&mkt=zh-cn
    [14] SANKAR J, RATH H, PRABHURAJA V, et al. Meso-meso-linked corrole dimers with modified cores:synthesis, characterization, and properties[J]. Chemistry-A European Journal, 2007, 13(1):105-114. http://cn.bing.com/academic/profile?id=175361aed4ee05e803313ac300515010&encoded=0&v=paper_preview&mkt=zh-cn
    [15] SRIKANTH M, SASTRY G N, SOUJANYA Y. Molecular design of corrole-based D-π-A sensitizers for dye-sensitized solar cell applications[J]. International Journal of Quantum Chemistry, 2015, 115(12):745-752. doi: 10.1002/qua.24888
    [16] KURTZ H A, STEWART J J P, DIETER K M. Calculation of the nonlinear optical properties of molecules[J]. Journal of Computational Chemistry, 1990, 11(1):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/jcc.540110110
    [17] BUCKINGHAM A D. Permanent and induced molecular moments and long-range intermolecular forces[J]. Advances in Chemical Physics:Intermolecular Forces, 1967, 12:107-142. doi: 10.1002-9780470143582.ch2/
    [18] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F N, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45):11623-11627. http://cn.bing.com/academic/profile?id=7dcbc76acf8b8c770cc107c8a3eaeaea&encoded=0&v=paper_preview&mkt=zh-cn
    [19] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2):785-789. http://cn.bing.com/academic/profile?id=49e214ce2ba0dad5e22c141721a3d0e1&encoded=0&v=paper_preview&mkt=zh-cn
    [20] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3):213-222. http://cn.bing.com/academic/profile?id=f67c770dde9c8dca55a15501d1b8d571&encoded=0&v=paper_preview&mkt=zh-cn
    [21] ANDRAE D, HAEUSSERMANN U, DOLG M, et al. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements[J]. Theoretica Chimica Acta, 1990, 77(2):123-141. doi: 10.1007%2FBF01112848
    [22] YANAI T, TEW D P, HANDY N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chemical Physics Letters, 2004, 393(1/2/3):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97a6cc6c411a8d778b545cc2072a03db
    [23] LU S I. Assessment of the global and range-separated hybrids for computing the dynamic second-order hyperpolarizability of solution-phase organic molecules[J]. Theoretical Chemistry Accounts, 2014, 133(2):1439/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27f7f34fbbf547ee8bd921472993fee9
    [24] HICKEY A L, ROWLEY C N. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities[J]. The Journal of Physical Chemistry A, 2014, 118(20):3678-3687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e38c4152cf8f6940f03d1788b6a9f3c0
    [25] SASAGANE K, AIGA F, ITOH R. Higher-order response theory based on the quasienergy derivatives:the derivation of the frequency-dependent polarizabilities and hyperpolarizabilities[J]. The Journal of Chemical Physics, 1993, 99(5):3738-3778. http://cn.bing.com/academic/profile?id=d5fc2c36c74648ba56e762c8ae629abe&encoded=0&v=paper_preview&mkt=zh-cn
    [26] RAPPOPORT D, FURCHE F. Property-optimized Gaussian basis sets for molecular response calculations[J]. The Journal of Chemical Physics, 2010, 133(13):134105/1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bf3eab698c6e9f3e49c2cf8f662df85
    [27] BALABANOV N B, PETERSON K A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn[J]. The Journal of Chemical Physics, 2005, 123(6):064107/1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b132e4444e12d06c2829f14ebd26713
    [28] KENDALL R A, DUNNING JR T H, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9):6796-6806. http://cn.bing.com/academic/profile?id=7982ccdd14fa07f45b109a411745b43e&encoded=0&v=paper_preview&mkt=zh-cn
    [29] FRISH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09[CP]. Revision D.01. Gaussian Inc: Wallingford, CT, 2013.
    [30] LU T, CHEN F W. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592. http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr201205006
    [31] HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/jdq200504018
    [32] GHOSH A, JYNGE K. Molecular structures and energetics of corrole isomers:a comprehensive local density functional theoretical study[J]. Chemistry-A European Journal, 1997, 3(5):823-833. http://cn.bing.com/academic/profile?id=d0382888aec6829fc08901336c5ba2a0&encoded=0&v=paper_preview&mkt=zh-cn
    [33] CAI Z L, CROSSLEY M J, REIMERS J R, et al. Density functional theory for charge transfer:the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations[J]. The Journal of Physical Chemistry B, 2006, 110(31):15624-15632. http://cn.bing.com/academic/profile?id=7940586e3a4007c283edace656251164&encoded=0&v=paper_preview&mkt=zh-cn
    [34] LI M Z, ZHU W H, LIANG X. Synthesis and electronic structure of A2B type halogen atoms substituted H3-triarylcorroles[J]. Chinese Journal of Structure Chemistry, 2017(3):367-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jghx201703001
    [35] JACQUEMIN D, PERPETE E A, SCUSERIA G E, et al. TD-DFT performance for the visible absorption spectra of organic dyes:conventional versus long-range hybrids[J]. Journal of Chemical Theory and Computation, 2008, 4(1):123-135. http://cn.bing.com/academic/profile?id=67092db978f33772c6a6b1b9468c0349&encoded=0&v=paper_preview&mkt=zh-cn
    [36] LÓPEZ S F, MEZA M P, HOYOS F T. Study of the nonlinear optical properties of 4-nitroaniline type compounds by density functional theory calculations:towards new NLO materials[J]. Computational and Theoretical Chemistry, 2018, 1133:25-32. http://cn.bing.com/academic/profile?id=de40b7bdbae5438d370a3563347b4db5&encoded=0&v=paper_preview&mkt=zh-cn
    [37] LU T. Multiwfn Manual, version 3.6(dev)[CP]. Section 3.21.1. http://sobereva.com/multiwfn. 2018-08-30.
    [38] CHEN S, ULLAH N, ZHANG R. Exciton self-trapping in sp2 carbon nanostructures induced by edge ether groups[J]. The Journal of Physical Chemistry Letters, 2018, 9(17):4857-4864. doi: 10.1021/acs.jpclett.8b01972
    [39] 康慧敏, 王洪强, 王慧莹, 等.卟啉-碳硼烷-硼亚甲基二吡咯三元化合物二阶非线性光学性质的理论研究[J].高等学校化学学报, 2019, 40(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201905015

    KANG H M, WANG H Q, WANG H Y, et al. Theoretical study on the second-order nonlinear optical properties of a porphyrin-o-carborane-boron-dipyrromethene triad compound[J]. Chemical Journal of Chinese Universities, 2019, 40(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201905015
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  2287
  • HTML全文浏览量:  1497
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回