徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. DOI: 10.6054/j.jscnun.2020016
引用本文: 徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. DOI: 10.6054/j.jscnun.2020016
XU Guigui, WANG Libo, LIN Guoguang. Pullback Attractors for the Boussinesq-Beam Equation with Time Delay[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 104-111. DOI: 10.6054/j.jscnun.2020016
Citation: XU Guigui, WANG Libo, LIN Guoguang. Pullback Attractors for the Boussinesq-Beam Equation with Time Delay[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 104-111. DOI: 10.6054/j.jscnun.2020016

带时滞项的Boussinesq-Beam方程的拉回吸引子

Pullback Attractors for the Boussinesq-Beam Equation with Time Delay

  • 摘要: 利用压缩函数的方法和相关理论,研究带时滞项的Boussinesq-Beam方程的拉回吸引子的存在性:首先通过作内积和不等式估计得到拉回吸收集的存在性,然后借助构造具体的能量泛函并结合收缩函数法的思想验证带时滞项的Boussinesq-Beam方程的解所生成的过程 \U(t, \tau)\_t \geqslant \tau在 C_D(A), V中是渐近紧的,最后证明过程 \U(t, \tau)\_t \geqslant \tau在 C_D(A), V中存在拉回吸引子.

     

    Abstract: The existence of pullback attractors for the Boussinesq-Beam equation with time delay is handled with the concept of contractive function and some related method. Firstly, the existence of a pullback absorbing set is verified by taking the inner product and estimating the inequalities. Then the specific energy function is constructed and the method of contractive functions is used to prove that the process \U(t, \tau)\_t \geqslant \tau in C_D(A), V produced by the Boussinesq-Beam equation with time delay possess compactness. Finally, the existence of pullback attractors in C_D(A), V for the process \U(t, \tau)\_t \geqslant \tau is proved.

     

/

返回文章
返回