广义泊松计数模型及其统计推断

The Generalized Poisson Count Technique and its Statistical Inference

  • 摘要: 基于广义泊松分布的性质,提出了广义泊松计数模型,解决了泊松计数模型中对照组数据过度分散和过度集中的问题.在模型的统计推断中,通过引入缺失数据和构建替代函数,研究了使用EM算法、MM算法计算模型中参数极大似然估计的迭代收敛算法.进一步地,通过统计模拟展示迭代算法中参数估计的误差,对模拟结果进行讨论得到有效的信息.

     

    Abstract: Based on the Generalized Poisson distribution, the Generalized Poisson Count Technique is introduced to solve the over-dispersion and under-dispersion in the Poisson Item Count Technique. For the statistical inference, the iterative algorithm using EM algorithm and MM algorithm is studied to calculate the maximum likelihood estimate in the model by introducing the missing data and constructing the substitution function. Furthermore, in the simulation, the bias of the estimate is presented and the simulation results are discussed to find effective information.

     

/

返回文章
返回