Stability Analysis of an SIRS Epidemic Model with Information Intervention
-
摘要: 建立了一类基于信息干预和疫苗接种的SIRS传染病模型, 研究了该模型的全局渐近稳定性, 给出了疾病持久和灭绝的基本再生数ℜ0.研究结果表明:当ℜ0 < 1时, 该模型存在全局渐近稳定的无病平衡点; 当ℜ0>1时, 该模型存在全局渐近稳定的地方病平衡点.数值算例验证了理论分析结果.Abstract: The asymptotic behavior of an SIRS epidemic model containing information intervention and vaccination has been studied. The results indicate that the basic reproduction number ℜ0 is the threshold of disease persistence and extinction. If ℜ0 < 1, the system has an disease-free equilibrium which is globally asymptotically stable, while if ℜ0>1, there exists an epidemic equilibrium which is globally asymptotically stable. At last, some numerical exam-ples are given to illustrate the results.
-
研究流行病的传播规律极为重要[1-3].目前, 许多学者利用数学工具描述动力学模型, 进一步预测流行病传播[4-6].疫苗接种是控制流行病传播的重要手段之一[7-9], 为了研究疫苗接种对流行病动力学行为的影响, LAHROUZ等[8]提出了如下带有疫苗接种的SIRS传染病模型:
{dS=((1−p)b−μS−βSIφ(I)+γR)dt,dI=(−(μ+c+α)I+βSIφ(I))dt,dR=(pb−(μ+γ)R+αI)dt, (1) 其中, S、I、R分别代表易感者、感染者、恢复者的人数;所有参数均非负, 其生物学意义如下:b为出生率, p (0≤p≤1)为疫苗接种率, μ为自然死亡率, c为因病死亡率, β为感染系数, α为恢复率, γ为恢复者免疫力丧失率, φ(I)为正函数, 且φ(0)=1, φ′(I)≥0.该模型给出了无病平衡点和地方病平衡点, 讨论了2个平衡点的全局渐近稳定性.
在疾病爆发期间, 信息干预(宣传、报道、教育等)会对人们的行为产生影响, 从而影响流行病的传播速度.近年来, 有许多学者研究了信息干预对流行病传播的影响[10-12].文献[6]指出媒体报道虽然不能使感染者恢复, 但可以降低感染者人数的峰值.因此, 将媒体报道因素考虑到模型中是很有必要的.
本文将信息干预引入到模型(1)中, 得到了新的基于信息干预和疫苗接种的SIRS传染病模型, 研究了新模型平衡点的存在性及其渐近稳定性, 给出了基本再生数, 并通过数值模拟验证了理论结果.
1. 主要结果及证明
将信息干预引入到模型(1)中, 得到了新的基于信息干预和疫苗接种的SIRS传染病模型:
{dS=((1−p)b−μS−βSIφ(I)+γR−μ1mZS)dt,dI=(−(μ+c+α)I+βSIφ(I))dt,dR=(pb−(μ+γ)R+αI+μ1mZS)dt,dZ=(aI1+a1I−a0Z)dt, (2) 其中, Z为信息密度, m、μ1、a、a1和a0分别表示信息干预率、信息强度、信息增长率、饱和常数和信息自然消亡率.
本文的主要结果如下:
定理1 (ⅰ)如果ℜ0 < 1, 则无病平衡点E0是局部渐近稳定的;如果ℜ0>1,则E0是不稳定的.
(ⅱ)模型(2)有1个地方病平衡点E*, 且当ℜ0>1并满足A1B1>C1及A1(B1C1-A1C1)>C12时, E*是局部渐近稳定的.
定理2 当ℜ0=1时, 模型(2)有1个前向分支.
定理3 当ℜ0 < 1时, 模型(2)的无病平衡点U0=(X0, 0)是全局渐近稳定的.
定理4 若ℜ0>1且
a2<a03(c+2μβS∗γφ(I∗)), μ21m2<min{a0γ212μ2S∗2(c+2μβS∗γφ(I∗)),a0αμ2(μ+γ)cb2,8μ2(μ+γ)α3cγZ∗2,a0γ6S∗2,2γa20(μ+a1b)29a2b2(c+2μβS∗γφ(I∗))}, 则模型(2)的地方病平衡点E*是全局渐近稳定的.
1.1 平衡点和正解的存在性
由文献[13]的方法, 可以得到模型(2)的基本再生数:
ℜ0=β(1−p)(μ+γ)+βγp(μ+γ)(μ+c+α). (3) 下面考虑模型(2)的平衡点的存在性.令模型(2)右端等于零, 即
{(1−p)b−μS−βSIφ(I)+γR−μ1mZS=0,−(μ+c+α)I+βSIφ(I)=0,pb−(μ+γ)R+αI+μ1mZS=0,aI1+a1I−a0Z=0. (4) 求解方程组(4), 可得模型(2)存在2个平衡点:(1)无病平衡点E0=(μ(1−p)b+γbμ(μ+γ),0,pbμ+γ,0). (2)当ℜ0>1时,存在地方病平衡点E*=(S*, I*, R*, Z*), 其中
S∗=(μ+c+α)φ(I∗)β, R∗=1μ+γ[pb+αI∗+μ1ma(μ+c+α)φ(I∗)I∗a0β(1+a1I∗)], Z∗=aI∗a0(1+a1I∗), 且I*是以下方程的唯一正根:
H(I)=(1−p)b−(μ+c+α)φ(I)β−(μ+c+α)I+γpbμ+γ+αγIμ+γ+μ1maγ(μ+c+α)φ(I)Ia0β(μ+γ)(1+a1I)=0, 事实上, 如果ℜ0>1, 则H(0)>0, H′(I) < 0, 那么limI→∞ H(I)=-∞, 即ℜ0>1当且仅当H(I)=0有唯一的正解.
接下来讨论模型(2)的正解.由模型(2)可得
dSdt|S=0=(1−p)b+γR≥0,dIdt|I=0≥0, dRdt|R=0=pb+αI+μ1mZS≥0,dZdt|Z=0=aI1+aI≥0, 如果考虑该区域内部, 由模型(2)可知人口总数N=S+I+R满足如下微分方程:
dNdt=b−μN−cI. 所以, dNdt⩽, 即supt→∞N \leqslant \frac{b}{\mu} .因此, \frac{b}{\mu}是S、I和R的上界.根据模型(2)的第4个方程和I的界, 有lim supt→∞ Z \leqslant \frac{a b}{a_{0}\left(\mu+a_{1} b\right)}.而且, 有以下不变集集合:
\begin{gathered} \mathit{\Gamma } = \left\{ {(S,I,R,Z) \in \mathbb{R}_ + ^4:S + I + R \leqslant \frac{b}{\mu },0 \leqslant Z \leqslant \frac{{ab}}{{{a_0}\left( {\mu + {a_1}b} \right)}},} \right. \hfill \\ \left. {S \geqslant 0,I \geqslant 0,R \geqslant 0,Z \geqslant 0} \right\}. \hfill \\ \end{gathered} 综上, 在非负集 \mathbb{R}_{+}^{4}上, 解将保持在Γ中.
1.2 E0和E*的局部稳定性
为了方便, 给出了模型(2)的可变矩阵:
\mathit{\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} { - \mu - \frac{{\beta I}}{{\varphi \left( I \right)}} - c}&{ - \frac{{\beta S}}{{\varphi \left( I \right)}}}&\gamma &{ - \frac{{\beta I}}{{\varphi \left( I \right)}}}\\ {\frac{{\beta I}}{{\varphi \left( I \right)}}}&{ - \left( {pq} \right)}&0&0\\ {{\mu _1}mZ}&\alpha &{ - \left( {\mu + \gamma } \right)}&{{\mu _1}mS}\\ 0&{\frac{a}{{{{\left( {1 + {a_1}I} \right)}^2}}}}&0&{ - {a_0}} \end{array}} \right]. (5) 对地方病平衡点E*, 其特征方程为:
{\lambda ^4} + {A_1}{\lambda ^3} + {B_1}{\lambda ^2} + {C_1}\lambda + {D_1} = 0, 其中,
{A_1} = {a_0} + 2\mu + \gamma + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*}, \begin{array}{l} {B_1} = {a_0}(\mu + \gamma ) + \left( {\mu + {a_0}} \right)\left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*}} \right) + \\ \;\;\;\;\;\;\;\;\gamma \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}} \right) + \frac{{{\beta ^2}{S^*}{I^*}}}{{\varphi {{\left( {{I^*}} \right)}^2}}}, \end{array} \begin{array}{*{20}{c}} {{C_1} = \frac{{{\beta ^2}{S^*}{I^*}}}{{\varphi {{\left( {{I^*}} \right)}^2}}}\left( {{a_0} + \mu + \gamma } \right) + \frac{{a\beta {I^*}{\mu _1}m{S^*}}}{{{{\left( {1 + {a_1}{I^*}} \right)}^2}}} - \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}\alpha {\gamma ^ + }}\\ {{a_0}\mu \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*}} \right) + {a_0}\gamma \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}} \right),} \end{array} \begin{array}{*{20}{c}} {{D_1} = \frac{{{a_0}\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}(\mu (\mu + c + \alpha ) + \gamma (\mu + c)) + }\\ {\frac{{a\beta {I^*}}}{{\varphi \left( {{I^*}} \right){{\left( {1 + {a_1}{I^*}} \right)}^2}}}\mu {\mu _1}m{S^*}.} \end{array} 定理1的证明 (ⅰ)与文献[13]中定理2的证明类似, 此处略.
(ⅱ)显然A1>0, D1>0.由Routh-Hurwitz判据, 若A1B1>C1和A1(B1C1-A1D1)>C12, 则JE*的特征方程的所有根要么非负, 要么有负实部.因此, 如果ℜ0>1, A1B1>C1, A1(B1C1-A1D1)>C12,则由Hartman-Grobman定理[14]可知E*是局部渐近稳定的.
定理2的证明 当ℜ0=1时, 令x1=S, x2=I, x3=R, x4=Z, 将φ=β作为分叉参数.于是, 对φ=φ*=β*, 由ℜ0=1可得\beta^{*}=\frac{b((1-p) \mu+\gamma)}{\mu(\mu+\gamma)(\mu+c+\alpha)} .应用新的变换, 模型(2)可以改写为:
\left\{ \begin{array}{l} \frac{{{\rm{d}}{x_1}}}{{{\rm{d}}t}} = \left( {1 - p} \right)b - \mu {x_1} - \frac{{\beta {x_1}{x_2}}}{{\varphi \left( {{x_2}} \right)}} + \gamma {x_3} - {\mu _1}m{x_1}{x_4}: = {f_1},\\ \frac{{{\rm{d}}{x_2}}}{{{\rm{d}}t}} = - (\mu + c + \alpha ){x_2} + \frac{{\beta {x_1}{x_2}}}{{\varphi \left( {{x_2}} \right)}}: = {f_2},\\ \frac{{{\rm{d}}{x_3}}}{{{\rm{d}}t}} = pb - (\mu + \gamma ){x_3} + \alpha {x_2} + {\mu _1}m{x_1}{x_4}: = {f_3},\\ \frac{{{\rm{d}}{x_4}}}{{{\rm{d}}t}} = \frac{{a{x_2}}}{{1 + {a_1}{x_2}}} - {a_0}{x_4}: = {f_4}. \end{array} \right. 对于无病平衡点x*, 可以得到(x*, β*)的雅可比矩阵:
\begin{array}{l} {\mathit{\boldsymbol{D}}_{{x^ * }}}\left( {{\beta ^ * }} \right) = \\ \left[ {\begin{array}{*{20}{c}} { - \mu }&{ - \left( {\mu + c + \alpha } \right)}&\gamma &{\frac{{ - {\mu _1}m\left[ {\left( {1 - p} \right)\left( {\mu + \gamma } \right) + \gamma p} \right]}}{{\varphi \left( {x_2^*} \right)\left( {\mu + \gamma } \right)}}}\\ 0&0&0&0\\ 0&\alpha &{ - \left( {\mu + \gamma } \right)}&{\frac{{{\mu _1}m\left[ {\left( {1 - p} \right)\left( {\mu + \gamma } \right) + \gamma p} \right]}}{{\varphi \left( {x_2^*} \right)\left( {\mu + \gamma } \right)}}}\\ 0&a&0&{ - {a_0}} \end{array}} \right]. \end{array} 当ℜ0=1时, Dx*(β*)有1个零特征值, 且其他特征值都是非负的. Dx*(β*)相应于零特征值的右特征向量为y=(y1, y2, y3, y4)′,其中
\left\{ \begin{array}{l} {y_1} = \frac{1}{\mu }\left\{ {\frac{{\gamma \alpha }}{{\left( {\mu + \gamma } \right)a}} - \frac{{\mu + c + \alpha }}{a} - \frac{{\mu {\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]}}{{\varphi \left( {x_2^*} \right){a_0}{{(\mu + \gamma )}^2}}}} \right\},\\ {y_2} = \frac{1}{a},\\ {y_3} = \frac{1}{{(\mu + \gamma )}}\left\{ {\frac{\alpha }{a} + \frac{{{\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]}}{{{a_0}\varphi \left( {x_2^*} \right)(\mu + \gamma )}}} \right\},\\ {y_4} = \frac{1}{{{a_0}}}. \end{array} \right. 类似地, 可以得到Dx*(β*)相应于零特征值的左特征向量为z=(z1, z2, z3, z4), 其中z1=0, z2=1, z3=0, z4=0.由文献[12]可知,当ℜ0=1时, 常数a2和b2可决定无病平衡点的稳定性.下面计算a2和b2. f=(f1, f2, f3, f4)在(x*, β*)处的非零二阶偏导为:
\frac{{{\partial ^2}{f_2}}}{{\partial {x_2}\partial {x_1}}} = {\beta ^*},\frac{{{\partial ^2}{f_2}}}{{\partial {x_1}\partial {x_2}}} = {\beta ^*},\frac{{{\partial ^2}{f_2}}}{{\partial {x_2}\partial \beta }} = x_1^*, 则
\begin{array}{l} {a_2} = \frac{{ - 2((1 - p)(\mu + \gamma ) + \gamma p)}}{{{a_0}{a^2}\mu {{(\mu + \gamma )}^3}(\mu + c + \alpha )\varphi \left( {x_2^*} \right)}}\left\{ {{a_0}\varphi \left( {x_2^*} \right) \times } \right.\\ \;\;\;\;\;\;\;(\mu + c + \alpha )(\mu + \gamma ) + {a_0}\varphi \left( {x_2^*} \right)\gamma (\mu + c)(\mu + \gamma ) + \\ \;\;\;\;\;\;\;\left. {a\mu {\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]} \right\}, \end{array} {b_2} = \frac{{(\mu + \gamma )(1 - p) + \gamma p}}{{a\varphi \left( {x_2^*} \right)(\mu + \gamma )}}. 显然, a2 < 0, b2>0.得证.
1.3 E0和E*的全局稳定性
假设模型(2)可改写为[15]:
\frac{{{\rm{d}}\mathit{\boldsymbol{X}}}}{{{\rm{d}}t}} = F(\mathit{\boldsymbol{X}},Y),\frac{{{\rm{d}}Y}}{{{\rm{d}}t}} = G(\mathit{\boldsymbol{X}},Y),G(\mathit{\boldsymbol{X}},0) = 0, 其中, \boldsymbol{X} \in \mathbb{R}^{3} 、Y \in \mathbb{R} 分别代表未感染者和感染者的人数.令U0=(X0, 0)为无病平衡点.
引理1[15] 若ℜ0 < 1且以下条件满足:
(ⅰ)对\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{d} t}=F(\boldsymbol{X}, 0), \boldsymbol{X}_{0} 是全局渐近稳定的;
(ⅱ)∀(X, Y)∈Γ, 有G(X, Y)=DYG(X0, 0)Y- \hat{G}(\boldsymbol{X}, Y), \hat{G}(\boldsymbol{X}, Y) \geqslant 0, 其中, DYG(X0, 0)为M-矩阵, 则模型(2)的无病平衡点U0=(X0, 0)是全局渐近稳定的.
定理3的证明 类似文献[12]中定理2的证明, 有
\begin{array}{l} F(\mathit{\boldsymbol{X}},Y) = \left( {(1 - p)b - \mu S - \frac{{\beta SI}}{{\varphi (I)}} + \gamma R - {\mu _1}mZS,} \right.\\ \left. {pb - (\mu + \gamma )R + \alpha I + {\mu _1}mZS,\frac{{aI}}{{1 + {a_1}I}} - {a_0}Z} \right), \end{array} G(\mathit{\boldsymbol{X}},Y) = - (\mu + c + \alpha )I + \frac{{\beta SI}}{{\varphi (I)}},G(\mathit{\boldsymbol{X}},0) = 0, 其中, X=(S, R, Z)′, Y=I.无病平衡点U0=E1=(X0, 0)且 \boldsymbol{X}_{0}=\left(\frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, \frac{p b}{\mu+\gamma}, 0\right).取t→∞, 则有 \boldsymbol{X} \rightarrow\left(\frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, \frac{p b}{\mu+\gamma}, 0\right).显然X0是全局渐近稳定的.更进一步地,
\begin{array}{l} G(\mathit{\boldsymbol{X}},Y) = - (\mu + c + \alpha )\left( {1 - {\Re _0}} \right)I - \\ \;\;\;\;\;\;\;\frac{{\beta I}}{{\varphi (I)}}\left[ {\frac{{\varphi (I)(\mu (1 - p)b + \gamma b)}}{{\mu (\mu + \gamma )}} - S} \right]. \end{array} 若 S \leqslant \frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, 则
\hat G(\mathit{\boldsymbol{X}},Y) = \frac{{\beta I}}{{\varphi (I)}}\left[ {\frac{{\varphi (I)(\mu (1 - p)b + \gamma b)}}{{\mu (\mu + \gamma )}} - S} \right] \ge 0. 所以条件(ⅰ)、(ⅱ)满足.因此, 当ℜ0 < 1时, 模型(2)的无病平衡点是全局渐近稳定的.
定理4的证明 在区间Γ上, 考虑函数V:
\begin{array}{l} V(S,I,R,Z) = \frac{1}{2}{\left[ {\left( {S - {S^*}} \right) + \left( {I - {I^*}} \right) + \left( {R - {R^*}} \right)} \right]^2} + \\ \;\;\;\;{m_1}\left( {I - {I^*} - {I^*}\log \frac{I}{{{I^*}}}} \right) + \frac{{{m_2}}}{2}{\left( {S - {S^*} + I - {I^*}} \right)^2} + \frac{{{m_3}}}{2}{\left( {R - {R^*}} \right)^2} + \\ \;\;\;\;\frac{1}{2}{\left( {Z - {Z^*}} \right)^2} = {V_1} + {m_1}{V_2} + {m_2}{V_3} + {m_3}{V_4} + {V_5}, \end{array} (6) 其中,m1、m2、m3都是正常数.可以得到Vi(i=1, 2, …, 5)的导数如下:
\begin{array}{l} {{\dot V}_1} = - \mu {\left( {S - {S^*}} \right)^2} - (\mu + c){\left( {I - {I^*}} \right)^2} - \mu {\left( {R - {R^*}} \right)^2} - \\ \;\;\;\;\;\;(2\mu + c)\left( {S - {S^*}} \right)\left( {I - {I^*}} \right) - 2\mu \left( {S - {S^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;\;(2\mu + c)\left( {I - {I^*}} \right)\left( {R - {R^*}} \right), \end{array} \begin{array}{l} {{\dot V}_2} = - \frac{{\beta S}}{{\varphi (I)\varphi \left( {{I^*}} \right)}}\left( {\varphi (I) - \varphi \left( {{I^*}} \right)} \right)\left( {I - {I^*}} \right) + \\ \;\;\;\;\;\;\;\frac{\beta }{{\varphi \left( {{I^*}} \right)}}\left( {S - {S^*}} \right)\left( {I - {I^*}} \right), \end{array} \begin{array}{l} {{\dot V}_3} = - \mu {\left( {S - {S^*}} \right)^2} - \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}{\left( {I - {I^*}} \right)^2} + \gamma \left( {S - {S^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;{\mu _1}m{S^*}\left( {S - {S^*}} \right)\left( {Z - {Z^*}} \right) - {\mu _1}mZ{\left( {S - {S^*}} \right)^2} - \\ \;\;\;\;\;\left( {\mu + \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}} \right)\left( {S - {S^*}} \right)\left( {I - {I^*}} \right) + \gamma \left( {I - {I^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;{\mu _1}mZ\left( {I - {I^*}} \right)\left( {S - {S^*}} \right) - {\mu _1}m{S^*}\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right), \end{array} \begin{array}{l} {{\dot V}_4} = - (\mu + \gamma ){\left( {R - {R^*}} \right)^2} + \alpha \left( {R - {R^*}} \right)\left( {I - {I^*}} \right) + \\ \;\;\;\;\;{\mu _1}m{Z^*}\left( {R - {R^*}} \right)\left( {S - {S^*}} \right) + {\mu _1}mS\left( {R - {R^*}} \right)\left( {Z - {Z^*}} \right), \end{array} {{\dot V}_5} = \frac{{a\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)}}{{\left( {1 + {a_1}I} \right)\left( {1 + {a_1}{I^*}} \right)}} - {a_0}{\left( {Z - {Z^*}} \right)^2}. 取m_{1}=\frac{\varphi\left(I^{*}\right)}{\beta}\left((2 \mu+c)+\frac{2 \mu}{\gamma}\left(\mu+\frac{\beta S^{*}}{\varphi\left(I^{*}\right)}\right)\right) , m_{2}=\frac{2 \mu}{\gamma}, m_{3}=\frac{c}{\alpha}, 可得到:
\begin{array}{l} \dot V \le - \mu {\left( {S - {S^*}} \right)^2} - \left( {\mu + c} \right){\left( {I - {I^*}} \right)^2} - \mu {\left( {R - {R^*}} \right)^2} - \\ \;\;\;\;\;\frac{{2\mu }}{\gamma }\left( {\mu {{\left( {S - {S^*}} \right)}^2} + \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}{{\left( {I - {I^*}} \right)}^2} + {\mu _1}mZ{{\left( {S - {S^*}} \right)}^2}} \right) - \\ \;\;\;\;\;\frac{{2\mu }}{\gamma }\left( {{\mu _1}m{S^*}\left( {S - {S^*}} \right)\left( {Z - {Z^*}} \right) + {\mu _1}mZ\left( {I - {I^*}} \right)\left( {S - {S^*}} \right) + } \right.\\ \;\;\;\;\;\left. {{\mu _1}m{S^*}\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)} \right) - \frac{c}{\alpha }\left( {\mu + \gamma } \right){\left( {R - {R^*}} \right)^2} + \\ \;\;\;\;\;\frac{c}{\alpha }\left( {{\mu _1}m{Z^*}\left( {R - {R^*}} \right)\left( {S - {S^*}} \right) + {\mu _1}mS\left( {R - {R^*}} \right)\left( {Z - {Z^*}} \right)} \right) + \\ \;\;\;\;\;\frac{{a\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)}}{{\left( {1 + {a_1}I} \right)\left( {1 + {a_1}{I^*}} \right)}} - {a_0}{\left( {Z - {Z^*}} \right)^2}. \end{array} 在区间Γ上, 取S和Z的上界, 若满足
{a^2} < \frac{{{a_0}}}{3}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right), \begin{array}{l} \mu _1^2{m^2} < \min \left\{ {\frac{{{a_0}{\gamma ^2}}}{{12{\mu ^2}{S^{*2}}}}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right),\frac{{{a_0}\alpha {\mu ^2}(\mu + \gamma )}}{{c{b^2}}},} \right.\\ \;\;\;\left. {\frac{{8{\mu ^2}(\mu + \gamma )\alpha }}{{3c\gamma {Z^{*2}}}},\frac{{{a_0}\gamma }}{{6{S^{*2}}}},\frac{{2\gamma a_0^2{{\left( {\mu + {a_1}b} \right)}^2}}}{{9{a^2}{b^2}}}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right)} \right\}, \end{array} 易得LV≤0.因此, 可知在Γ区间, 如果S=S*, I=I*, R=R*, Z=Z*, 则有LV < 0或LV=0.最后, 由LaSalle不变原理可知E*在Γ区间是全局渐近稳定的.
2. 数值模拟
本节将通过一系列的数值例子来验证模型(2)的无病平衡点和地方病平衡点的稳定性.
例1 模型(2)的参数取值如下:
p=0.5, b=1, β=0.01, μ=0.01, μ1=0.01, m=0.017, c=0.005, γ=0.001, α=0.8, a=0.01, a0=0.045, a1=1.令φ(I)=1+I2, 可得ℜ0=0.669 3 < 1, E0=(54.545 5, 0, 45.454 5, 0)且E*不存在.显然, 图 1A验证了定理3.
此外, 给出了信息强度μ1对传染病的影响.对于模型(2), 给出了关于I(t)的不同参数μ1(μ1=0, μ1=0.10, μ1=0.20)的时间序列(图 1B).可知在疾病爆发期间, 若增加信息强度μ1, 则可以减少感染者的数量并加速疾病的灭绝.
例2 模型(2)的参数取值如下:
p=0.5, b=4, β=0.04, μ=0.02, μ1=0.009, m=0.01, c=0.005, γ=0.01, α=0.7, a=0.02, a0=0.045, a1=1.令φ(I)=1+I2, 可知ℜ0=3.174 6>1, a2=4.000 0×10-4 < 0.033 1, μ12m2=8.100 00×10-9 < min{6.634 0×10-7, 1.771 9×10-5, 13.889 7, 2.701 6×10-8, 0.050 5}且E0=(93.333 3, 0, 40.000 0, 0), E*=(74.512 9, 1.238 7, 57.371 4, 0.245 9).显然, 图 2A验证了定理4.
类似地, 给出了在不同的信息强度μ1(μ1=0, μ1=0.10, μ1=0.20)的时间序列I(t)(图 2B).可知若增加信息强度μ1, 则可降低感染者数量.
3. 结论
本文研究了基于信息干预和疫苗接种的SIRS传染病模型(2), 分析了该模型中无病平衡点和地方病平衡点的局部、全局稳定性.研究结果表明:
(1) 通过疫苗接种率ℜ0, 可以进一步知道疫苗接种如何影响疾病传播.事实上, ℜ0可以被写成如下形式:
{\Re _0} = - p\frac{{\beta \mu }}{{(\mu + \gamma )(\mu + c + \alpha )}} + \frac{\beta }{{\mu + c + \alpha }}. 如果增加疫苗接种率p, 则基本再生数ℜ0将会减少.换言之, 疫苗接种率的增加可以抑制疾病的传播.
(2) 疾病爆发时, 信息强度的增加可以降低感染者的数量并且加速疾病的灭亡.
-
[1] BERRHAZI B, FATINI M, LAHROUZ A, et al. A stochastic SIRS epidemic model with a general awareness-induced incidence[J]. Physica A:Statistical Mechanics and its Applications, 2018, 512:968-980. doi: 10.1016/j.physa.2018.08.150
[2] LUH D L, LIU C C, LUO Y R, et al. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan[J]. Journal of Infection and Public Health, 2018, 11:215-223. doi: 10.1016/j.jiph.2017.07.021
[3] DAS P, MUKANDAVIRE Z, CHIYAKA C, et al. Bifurcation and chaos in S-I-S epidemic model[J]. Differential Equations and Dynamical Systems, 2009, 17(4):393-417. doi: 10.1007/s12591-009-0028-4
[4] 吴敏, 翁佩萱.具有阶段结构的多时滞SIR扩散模型的稳定性[J].华南师范大学学报(自然科学版), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml WU M, WENG P X. Stability of a stage-structured diffusive SIR model with delays[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml
[5] CAO B Q, SHAN M J, ZHANG Q M, et al. A stochastic SIS epidemic model with vaccination[J]. Physica A:Statistical Mechanics and its Applications, 2017, 486:127-143. doi: 10.1016/j.physa.2017.05.083
[6] XIAO Y N, TANG S Y, WU J H. Media impact switching surface during an infectious disease outbreak[J]. Scientific Report, 2015, 5:7838/1-9. doi: 10.1038/srep07838
[7] WANG X W, PENG H J, SHI B Y, et al. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model[J]. Communication in Nonlinear Science and Numerical Simulation, 2019, 67:37-48. doi: 10.1016/j.cnsns.2018.07.003
[8] LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with genera-lized non-linear incidence and vaccination[J]. Applied Mathematics and Computation, 2012, 218:6519-6525. doi: 10.1016/j.amc.2011.12.024
[9] 乔杰, 刘贤宁.考虑疫苗时效及潜伏期的乙肝传染病模型分析[J].西南大学学报(自然科学版), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016 QIAO J, LIU X L. Analysis of an HBV transmission model with vaccinal effectiveness and latency[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016
[10] BAO K B, ZHANG Q M. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention[J]. Advances in Difference Equations, 2017, 352:1-19. http://d.old.wanfangdata.com.cn/Periodical/yingysx201803027
[11] 赵晓艳, 明艳, 李学志.一类考虑媒体报道影响的传染病模型分析[J].数学的实践与认识, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046 ZHAO X Y, MING Y, LI X Z. Analysis of a kind of epidemic model with the impact of media coverage[J]. Mathematics in Practice and Theory, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046
[12] KUMAR A, SRIVASTAVE P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology, 2017, 414:103-119. doi: 10.1016/j.jtbi.2016.11.016
[13] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathema-tical Biosciences, 2002, 180(1):29-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bafe6f5a607891dd89d1790f875d387
[14] LAWRENCE P. Differential equations and dynamical systems[M]. New York:Springer, 1991.
[15] CASTILLO-CHAVEZ C, FENG Z L, HUANG W Z. On the computation of ℜ0 and its role in global stability[J]. Institute for Mathematics and its Applications, 2002, 125:229-250. https://mathscinet.ams.org/mathscinet-getitem?mr=1938888
-
期刊类型引用(7)
1. 李小妮. 一类带时滞的计算机病毒模型的最优控制. 现代信息科技. 2022(12): 136-139 . 百度学术
2. 陈婉婷,王火莲,郑仙芳,伍慧玲. 基于整体防护的SIR传染病模型的分析与预测. 闽江学院学报. 2022(05): 26-32 . 百度学术
3. 刘娟,潘玉荣,张子振. 一类具有常数移民特征的时滞SEI传染病模型的周期解. 新乡学院学报. 2022(12): 1-5 . 百度学术
4. 何雪晴,韦煜明. 受环境扰动的随机SIRS传染病模型的动力学分析. 阜阳师范大学学报(自然科学版). 2021(02): 11-16 . 百度学术
5. 李小妮. 基于信息干预和治疗的时滞SIRS传染病模型的最优控制. 宁夏师范学院学报. 2021(07): 5-12 . 百度学术
6. 贾慧鑫,杨军,张然. 面向装备承制单位的SIRS仿真研究. 电子设计工程. 2020(03): 32-37+42 . 百度学术
7. 张艳霞,李进. 基于SIR模型的新冠肺炎疫情传播预测分析. 安徽工业大学学报(自然科学版). 2020(01): 94-101 . 百度学术
其他类型引用(6)