Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

基于信息干预的SIRS传染病模型稳定性分析

李小妮, 张启敏

李小妮, 张启敏. 基于信息干预的SIRS传染病模型稳定性分析[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 98-103. DOI: 10.6054/j.jscnun.2019090
引用本文: 李小妮, 张启敏. 基于信息干预的SIRS传染病模型稳定性分析[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 98-103. DOI: 10.6054/j.jscnun.2019090
LI Xiaoni, ZHANG Qimin. Stability Analysis of an SIRS Epidemic Model with Information Intervention[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 98-103. DOI: 10.6054/j.jscnun.2019090
Citation: LI Xiaoni, ZHANG Qimin. Stability Analysis of an SIRS Epidemic Model with Information Intervention[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 98-103. DOI: 10.6054/j.jscnun.2019090

基于信息干预的SIRS传染病模型稳定性分析

基金项目: 

国家自然科学基金项目 11661064

详细信息
    通讯作者:

    张启敏, 教授, Email:zhangqimin64@sina.com

  • 中图分类号: O175.1

Stability Analysis of an SIRS Epidemic Model with Information Intervention

  • 摘要: 建立了一类基于信息干预和疫苗接种的SIRS传染病模型, 研究了该模型的全局渐近稳定性, 给出了疾病持久和灭绝的基本再生数0.研究结果表明:当0 < 1时, 该模型存在全局渐近稳定的无病平衡点; 当0>1时, 该模型存在全局渐近稳定的地方病平衡点.数值算例验证了理论分析结果.
    Abstract: The asymptotic behavior of an SIRS epidemic model containing information intervention and vaccination has been studied. The results indicate that the basic reproduction number 0 is the threshold of disease persistence and extinction. If 0 < 1, the system has an disease-free equilibrium which is globally asymptotically stable, while if 0>1, there exists an epidemic equilibrium which is globally asymptotically stable. At last, some numerical exam-ples are given to illustrate the results.
  • 研究流行病的传播规律极为重要[1-3].目前, 许多学者利用数学工具描述动力学模型, 进一步预测流行病传播[4-6].疫苗接种是控制流行病传播的重要手段之一[7-9], 为了研究疫苗接种对流行病动力学行为的影响, LAHROUZ等[8]提出了如下带有疫苗接种的SIRS传染病模型:

    {dS=((1p)bμSβSIφ(I)+γR)dt,dI=((μ+c+α)I+βSIφ(I))dt,dR=(pb(μ+γ)R+αI)dt, (1)

    其中, SIR分别代表易感者、感染者、恢复者的人数;所有参数均非负, 其生物学意义如下:b为出生率, p (0≤p≤1)为疫苗接种率, μ为自然死亡率, c为因病死亡率, β为感染系数, α为恢复率, γ为恢复者免疫力丧失率, φ(I)为正函数, 且φ(0)=1, φ′(I)≥0.该模型给出了无病平衡点和地方病平衡点, 讨论了2个平衡点的全局渐近稳定性.

    在疾病爆发期间, 信息干预(宣传、报道、教育等)会对人们的行为产生影响, 从而影响流行病的传播速度.近年来, 有许多学者研究了信息干预对流行病传播的影响[10-12].文献[6]指出媒体报道虽然不能使感染者恢复, 但可以降低感染者人数的峰值.因此, 将媒体报道因素考虑到模型中是很有必要的.

    本文将信息干预引入到模型(1)中, 得到了新的基于信息干预和疫苗接种的SIRS传染病模型, 研究了新模型平衡点的存在性及其渐近稳定性, 给出了基本再生数, 并通过数值模拟验证了理论结果.

    将信息干预引入到模型(1)中, 得到了新的基于信息干预和疫苗接种的SIRS传染病模型:

    {dS=((1p)bμSβSIφ(I)+γRμ1mZS)dt,dI=((μ+c+α)I+βSIφ(I))dt,dR=(pb(μ+γ)R+αI+μ1mZS)dt,dZ=(aI1+a1Ia0Z)dt, (2)

    其中, Z为信息密度, mμ1aa1a0分别表示信息干预率、信息强度、信息增长率、饱和常数和信息自然消亡率.

    本文的主要结果如下:

    定理1  (ⅰ)如果0 < 1, 则无病平衡点E0是局部渐近稳定的;如果0>1,则E0是不稳定的.

    (ⅱ)模型(2)有1个地方病平衡点E*, 且当0>1并满足A1B1>C1A1(B1C1-A1C1)>C12时, E*是局部渐近稳定的.

    定理2  当0=1时, 模型(2)有1个前向分支.

    定理3  当0 < 1时, 模型(2)的无病平衡点U0=(X0, 0)是全局渐近稳定的.

    定理4  若0>1且

    a2<a03(c+2μβSγφ(I)),
    μ21m2<min{a0γ212μ2S2(c+2μβSγφ(I)),a0αμ2(μ+γ)cb2,8μ2(μ+γ)α3cγZ2,a0γ6S2,2γa20(μ+a1b)29a2b2(c+2μβSγφ(I))},

    则模型(2)的地方病平衡点E*是全局渐近稳定的.

    由文献[13]的方法, 可以得到模型(2)的基本再生数:

    0=β(1p)(μ+γ)+βγp(μ+γ)(μ+c+α). (3)

    下面考虑模型(2)的平衡点的存在性.令模型(2)右端等于零, 即

    {(1p)bμSβSIφ(I)+γRμ1mZS=0,(μ+c+α)I+βSIφ(I)=0,pb(μ+γ)R+αI+μ1mZS=0,aI1+a1Ia0Z=0. (4)

    求解方程组(4), 可得模型(2)存在2个平衡点:(1)无病平衡点E0=(μ(1p)b+γbμ(μ+γ),0,pbμ+γ,0). (2)当0>1时,存在地方病平衡点E*=(S*, I*, R*, Z*), 其中

    S=(μ+c+α)φ(I)β,
    R=1μ+γ[pb+αI+μ1ma(μ+c+α)φ(I)Ia0β(1+a1I)],
    Z=aIa0(1+a1I),

    I*是以下方程的唯一正根:

    H(I)=(1p)b(μ+c+α)φ(I)β(μ+c+α)I+γpbμ+γ+αγIμ+γ+μ1maγ(μ+c+α)φ(I)Ia0β(μ+γ)(1+a1I)=0,

    事实上, 如果0>1, 则H(0)>0, H′(I) < 0, 那么limI→∞ H(I)=-∞, 即0>1当且仅当H(I)=0有唯一的正解.

    接下来讨论模型(2)的正解.由模型(2)可得

    dSdt|S=0=(1p)b+γR0,dIdt|I=00,
    dRdt|R=0=pb+αI+μ1mZS0,dZdt|Z=0=aI1+aI0,

    如果考虑该区域内部, 由模型(2)可知人口总数N=S+I+R满足如下微分方程:

    dNdt=bμNcI.

    所以, dNdt, 即supt→∞N \leqslant \frac{b}{\mu} .因此, \frac{b}{\mu}SIR的上界.根据模型(2)的第4个方程和I的界, 有lim supt→∞ Z \leqslant \frac{a b}{a_{0}\left(\mu+a_{1} b\right)}.而且, 有以下不变集集合:

    \begin{gathered} \mathit{\Gamma } = \left\{ {(S,I,R,Z) \in \mathbb{R}_ + ^4:S + I + R \leqslant \frac{b}{\mu },0 \leqslant Z \leqslant \frac{{ab}}{{{a_0}\left( {\mu + {a_1}b} \right)}},} \right. \hfill \\ \left. {S \geqslant 0,I \geqslant 0,R \geqslant 0,Z \geqslant 0} \right\}. \hfill \\ \end{gathered}

    综上, 在非负集 \mathbb{R}_{+}^{4}上, 解将保持在Γ中.

    为了方便, 给出了模型(2)的可变矩阵:

    \mathit{\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} { - \mu - \frac{{\beta I}}{{\varphi \left( I \right)}} - c}&{ - \frac{{\beta S}}{{\varphi \left( I \right)}}}&\gamma &{ - \frac{{\beta I}}{{\varphi \left( I \right)}}}\\ {\frac{{\beta I}}{{\varphi \left( I \right)}}}&{ - \left( {pq} \right)}&0&0\\ {{\mu _1}mZ}&\alpha &{ - \left( {\mu + \gamma } \right)}&{{\mu _1}mS}\\ 0&{\frac{a}{{{{\left( {1 + {a_1}I} \right)}^2}}}}&0&{ - {a_0}} \end{array}} \right]. (5)

    对地方病平衡点E*, 其特征方程为:

    {\lambda ^4} + {A_1}{\lambda ^3} + {B_1}{\lambda ^2} + {C_1}\lambda + {D_1} = 0,

    其中,

    {A_1} = {a_0} + 2\mu + \gamma + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*},
    \begin{array}{l} {B_1} = {a_0}(\mu + \gamma ) + \left( {\mu + {a_0}} \right)\left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*}} \right) + \\ \;\;\;\;\;\;\;\;\gamma \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}} \right) + \frac{{{\beta ^2}{S^*}{I^*}}}{{\varphi {{\left( {{I^*}} \right)}^2}}}, \end{array}
    \begin{array}{*{20}{c}} {{C_1} = \frac{{{\beta ^2}{S^*}{I^*}}}{{\varphi {{\left( {{I^*}} \right)}^2}}}\left( {{a_0} + \mu + \gamma } \right) + \frac{{a\beta {I^*}{\mu _1}m{S^*}}}{{{{\left( {1 + {a_1}{I^*}} \right)}^2}}} - \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}\alpha {\gamma ^ + }}\\ {{a_0}\mu \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}} + {\mu _1}m{Z^*}} \right) + {a_0}\gamma \left( {\mu + \frac{{\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}} \right),} \end{array}
    \begin{array}{*{20}{c}} {{D_1} = \frac{{{a_0}\beta {I^*}}}{{\varphi \left( {{I^*}} \right)}}(\mu (\mu + c + \alpha ) + \gamma (\mu + c)) + }\\ {\frac{{a\beta {I^*}}}{{\varphi \left( {{I^*}} \right){{\left( {1 + {a_1}{I^*}} \right)}^2}}}\mu {\mu _1}m{S^*}.} \end{array}

    定理1的证明  (ⅰ)与文献[13]中定理2的证明类似, 此处略.

    (ⅱ)显然A1>0, D1>0.由Routh-Hurwitz判据, 若A1B1>C1A1(B1C1-A1D1)>C12, 则JE*的特征方程的所有根要么非负, 要么有负实部.因此, 如果0>1, A1B1>C1, A1(B1C1-A1D1)>C12,则由Hartman-Grobman定理[14]可知E*是局部渐近稳定的.

    定理2的证明  当0=1时, 令x1=S, x2=I, x3=R, x4=Z, 将φ=β作为分叉参数.于是, 对φ=φ*=β*, 由0=1可得\beta^{*}=\frac{b((1-p) \mu+\gamma)}{\mu(\mu+\gamma)(\mu+c+\alpha)} .应用新的变换, 模型(2)可以改写为:

    \left\{ \begin{array}{l} \frac{{{\rm{d}}{x_1}}}{{{\rm{d}}t}} = \left( {1 - p} \right)b - \mu {x_1} - \frac{{\beta {x_1}{x_2}}}{{\varphi \left( {{x_2}} \right)}} + \gamma {x_3} - {\mu _1}m{x_1}{x_4}: = {f_1},\\ \frac{{{\rm{d}}{x_2}}}{{{\rm{d}}t}} = - (\mu + c + \alpha ){x_2} + \frac{{\beta {x_1}{x_2}}}{{\varphi \left( {{x_2}} \right)}}: = {f_2},\\ \frac{{{\rm{d}}{x_3}}}{{{\rm{d}}t}} = pb - (\mu + \gamma ){x_3} + \alpha {x_2} + {\mu _1}m{x_1}{x_4}: = {f_3},\\ \frac{{{\rm{d}}{x_4}}}{{{\rm{d}}t}} = \frac{{a{x_2}}}{{1 + {a_1}{x_2}}} - {a_0}{x_4}: = {f_4}. \end{array} \right.

    对于无病平衡点x*, 可以得到(x*, β*)的雅可比矩阵:

    \begin{array}{l} {\mathit{\boldsymbol{D}}_{{x^ * }}}\left( {{\beta ^ * }} \right) = \\ \left[ {\begin{array}{*{20}{c}} { - \mu }&{ - \left( {\mu + c + \alpha } \right)}&\gamma &{\frac{{ - {\mu _1}m\left[ {\left( {1 - p} \right)\left( {\mu + \gamma } \right) + \gamma p} \right]}}{{\varphi \left( {x_2^*} \right)\left( {\mu + \gamma } \right)}}}\\ 0&0&0&0\\ 0&\alpha &{ - \left( {\mu + \gamma } \right)}&{\frac{{{\mu _1}m\left[ {\left( {1 - p} \right)\left( {\mu + \gamma } \right) + \gamma p} \right]}}{{\varphi \left( {x_2^*} \right)\left( {\mu + \gamma } \right)}}}\\ 0&a&0&{ - {a_0}} \end{array}} \right]. \end{array}

    0=1时, Dx*(β*)有1个零特征值, 且其他特征值都是非负的. Dx*(β*)相应于零特征值的右特征向量为y=(y1, y2, y3, y4)′,其中

    \left\{ \begin{array}{l} {y_1} = \frac{1}{\mu }\left\{ {\frac{{\gamma \alpha }}{{\left( {\mu + \gamma } \right)a}} - \frac{{\mu + c + \alpha }}{a} - \frac{{\mu {\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]}}{{\varphi \left( {x_2^*} \right){a_0}{{(\mu + \gamma )}^2}}}} \right\},\\ {y_2} = \frac{1}{a},\\ {y_3} = \frac{1}{{(\mu + \gamma )}}\left\{ {\frac{\alpha }{a} + \frac{{{\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]}}{{{a_0}\varphi \left( {x_2^*} \right)(\mu + \gamma )}}} \right\},\\ {y_4} = \frac{1}{{{a_0}}}. \end{array} \right.

    类似地, 可以得到Dx*(β*)相应于零特征值的左特征向量为z=(z1, z2, z3, z4), 其中z1=0, z2=1, z3=0, z4=0.由文献[12]可知,当0=1时, 常数a2b2可决定无病平衡点的稳定性.下面计算a2b2. f=(f1, f2, f3, f4)在(x*, β*)处的非零二阶偏导为:

    \frac{{{\partial ^2}{f_2}}}{{\partial {x_2}\partial {x_1}}} = {\beta ^*},\frac{{{\partial ^2}{f_2}}}{{\partial {x_1}\partial {x_2}}} = {\beta ^*},\frac{{{\partial ^2}{f_2}}}{{\partial {x_2}\partial \beta }} = x_1^*,

    \begin{array}{l} {a_2} = \frac{{ - 2((1 - p)(\mu + \gamma ) + \gamma p)}}{{{a_0}{a^2}\mu {{(\mu + \gamma )}^3}(\mu + c + \alpha )\varphi \left( {x_2^*} \right)}}\left\{ {{a_0}\varphi \left( {x_2^*} \right) \times } \right.\\ \;\;\;\;\;\;\;(\mu + c + \alpha )(\mu + \gamma ) + {a_0}\varphi \left( {x_2^*} \right)\gamma (\mu + c)(\mu + \gamma ) + \\ \;\;\;\;\;\;\;\left. {a\mu {\mu _1}m[(1 - p)(\mu + \gamma ) + \gamma p]} \right\}, \end{array}
    {b_2} = \frac{{(\mu + \gamma )(1 - p) + \gamma p}}{{a\varphi \left( {x_2^*} \right)(\mu + \gamma )}}.

    显然, a2 < 0, b2>0.得证.

    假设模型(2)可改写为[15]:

    \frac{{{\rm{d}}\mathit{\boldsymbol{X}}}}{{{\rm{d}}t}} = F(\mathit{\boldsymbol{X}},Y),\frac{{{\rm{d}}Y}}{{{\rm{d}}t}} = G(\mathit{\boldsymbol{X}},Y),G(\mathit{\boldsymbol{X}},0) = 0,

    其中, \boldsymbol{X} \in \mathbb{R}^{3} Y \in \mathbb{R} 分别代表未感染者和感染者的人数.令U0=(X0, 0)为无病平衡点.

    引理1[15]  若0 < 1且以下条件满足:

    (ⅰ)对\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{d} t}=F(\boldsymbol{X}, 0), \boldsymbol{X}_{0} 是全局渐近稳定的;

    (ⅱ)∀(X, Y)∈Γ, 有G(X, Y)=DYG(X0, 0)Y- \hat{G}(\boldsymbol{X}, Y), \hat{G}(\boldsymbol{X}, Y) \geqslant 0, 其中, DYG(X0, 0)为M-矩阵, 则模型(2)的无病平衡点U0=(X0, 0)是全局渐近稳定的.

    定理3的证明  类似文献[12]中定理2的证明, 有

    \begin{array}{l} F(\mathit{\boldsymbol{X}},Y) = \left( {(1 - p)b - \mu S - \frac{{\beta SI}}{{\varphi (I)}} + \gamma R - {\mu _1}mZS,} \right.\\ \left. {pb - (\mu + \gamma )R + \alpha I + {\mu _1}mZS,\frac{{aI}}{{1 + {a_1}I}} - {a_0}Z} \right), \end{array}
    G(\mathit{\boldsymbol{X}},Y) = - (\mu + c + \alpha )I + \frac{{\beta SI}}{{\varphi (I)}},G(\mathit{\boldsymbol{X}},0) = 0,

    其中, X=(S, R, Z)′, Y=I.无病平衡点U0=E1=(X0, 0)且 \boldsymbol{X}_{0}=\left(\frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, \frac{p b}{\mu+\gamma}, 0\right).取t→∞, 则有 \boldsymbol{X} \rightarrow\left(\frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, \frac{p b}{\mu+\gamma}, 0\right).显然X0是全局渐近稳定的.更进一步地,

    \begin{array}{l} G(\mathit{\boldsymbol{X}},Y) = - (\mu + c + \alpha )\left( {1 - {\Re _0}} \right)I - \\ \;\;\;\;\;\;\;\frac{{\beta I}}{{\varphi (I)}}\left[ {\frac{{\varphi (I)(\mu (1 - p)b + \gamma b)}}{{\mu (\mu + \gamma )}} - S} \right]. \end{array}

    S \leqslant \frac{\mu(1-p) b+\gamma b}{\mu(\mu+\gamma)}, 则

    \hat G(\mathit{\boldsymbol{X}},Y) = \frac{{\beta I}}{{\varphi (I)}}\left[ {\frac{{\varphi (I)(\mu (1 - p)b + \gamma b)}}{{\mu (\mu + \gamma )}} - S} \right] \ge 0.

    所以条件(ⅰ)、(ⅱ)满足.因此, 当0 < 1时, 模型(2)的无病平衡点是全局渐近稳定的.

    定理4的证明  在区间Γ上, 考虑函数V:

    \begin{array}{l} V(S,I,R,Z) = \frac{1}{2}{\left[ {\left( {S - {S^*}} \right) + \left( {I - {I^*}} \right) + \left( {R - {R^*}} \right)} \right]^2} + \\ \;\;\;\;{m_1}\left( {I - {I^*} - {I^*}\log \frac{I}{{{I^*}}}} \right) + \frac{{{m_2}}}{2}{\left( {S - {S^*} + I - {I^*}} \right)^2} + \frac{{{m_3}}}{2}{\left( {R - {R^*}} \right)^2} + \\ \;\;\;\;\frac{1}{2}{\left( {Z - {Z^*}} \right)^2} = {V_1} + {m_1}{V_2} + {m_2}{V_3} + {m_3}{V_4} + {V_5}, \end{array} (6)

    其中,m1m2m3都是正常数.可以得到Vi(i=1, 2, …, 5)的导数如下:

    \begin{array}{l} {{\dot V}_1} = - \mu {\left( {S - {S^*}} \right)^2} - (\mu + c){\left( {I - {I^*}} \right)^2} - \mu {\left( {R - {R^*}} \right)^2} - \\ \;\;\;\;\;\;(2\mu + c)\left( {S - {S^*}} \right)\left( {I - {I^*}} \right) - 2\mu \left( {S - {S^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;\;(2\mu + c)\left( {I - {I^*}} \right)\left( {R - {R^*}} \right), \end{array}
    \begin{array}{l} {{\dot V}_2} = - \frac{{\beta S}}{{\varphi (I)\varphi \left( {{I^*}} \right)}}\left( {\varphi (I) - \varphi \left( {{I^*}} \right)} \right)\left( {I - {I^*}} \right) + \\ \;\;\;\;\;\;\;\frac{\beta }{{\varphi \left( {{I^*}} \right)}}\left( {S - {S^*}} \right)\left( {I - {I^*}} \right), \end{array}
    \begin{array}{l} {{\dot V}_3} = - \mu {\left( {S - {S^*}} \right)^2} - \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}{\left( {I - {I^*}} \right)^2} + \gamma \left( {S - {S^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;{\mu _1}m{S^*}\left( {S - {S^*}} \right)\left( {Z - {Z^*}} \right) - {\mu _1}mZ{\left( {S - {S^*}} \right)^2} - \\ \;\;\;\;\;\left( {\mu + \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}} \right)\left( {S - {S^*}} \right)\left( {I - {I^*}} \right) + \gamma \left( {I - {I^*}} \right)\left( {R - {R^*}} \right) - \\ \;\;\;\;\;{\mu _1}mZ\left( {I - {I^*}} \right)\left( {S - {S^*}} \right) - {\mu _1}m{S^*}\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right), \end{array}
    \begin{array}{l} {{\dot V}_4} = - (\mu + \gamma ){\left( {R - {R^*}} \right)^2} + \alpha \left( {R - {R^*}} \right)\left( {I - {I^*}} \right) + \\ \;\;\;\;\;{\mu _1}m{Z^*}\left( {R - {R^*}} \right)\left( {S - {S^*}} \right) + {\mu _1}mS\left( {R - {R^*}} \right)\left( {Z - {Z^*}} \right), \end{array}
    {{\dot V}_5} = \frac{{a\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)}}{{\left( {1 + {a_1}I} \right)\left( {1 + {a_1}{I^*}} \right)}} - {a_0}{\left( {Z - {Z^*}} \right)^2}.

    m_{1}=\frac{\varphi\left(I^{*}\right)}{\beta}\left((2 \mu+c)+\frac{2 \mu}{\gamma}\left(\mu+\frac{\beta S^{*}}{\varphi\left(I^{*}\right)}\right)\right) , m_{2}=\frac{2 \mu}{\gamma}, m_{3}=\frac{c}{\alpha}, 可得到:

    \begin{array}{l} \dot V \le - \mu {\left( {S - {S^*}} \right)^2} - \left( {\mu + c} \right){\left( {I - {I^*}} \right)^2} - \mu {\left( {R - {R^*}} \right)^2} - \\ \;\;\;\;\;\frac{{2\mu }}{\gamma }\left( {\mu {{\left( {S - {S^*}} \right)}^2} + \frac{{\beta {S^*}}}{{\varphi \left( {{I^*}} \right)}}{{\left( {I - {I^*}} \right)}^2} + {\mu _1}mZ{{\left( {S - {S^*}} \right)}^2}} \right) - \\ \;\;\;\;\;\frac{{2\mu }}{\gamma }\left( {{\mu _1}m{S^*}\left( {S - {S^*}} \right)\left( {Z - {Z^*}} \right) + {\mu _1}mZ\left( {I - {I^*}} \right)\left( {S - {S^*}} \right) + } \right.\\ \;\;\;\;\;\left. {{\mu _1}m{S^*}\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)} \right) - \frac{c}{\alpha }\left( {\mu + \gamma } \right){\left( {R - {R^*}} \right)^2} + \\ \;\;\;\;\;\frac{c}{\alpha }\left( {{\mu _1}m{Z^*}\left( {R - {R^*}} \right)\left( {S - {S^*}} \right) + {\mu _1}mS\left( {R - {R^*}} \right)\left( {Z - {Z^*}} \right)} \right) + \\ \;\;\;\;\;\frac{{a\left( {I - {I^*}} \right)\left( {Z - {Z^*}} \right)}}{{\left( {1 + {a_1}I} \right)\left( {1 + {a_1}{I^*}} \right)}} - {a_0}{\left( {Z - {Z^*}} \right)^2}. \end{array}

    在区间Γ上, 取SZ的上界, 若满足

    {a^2} < \frac{{{a_0}}}{3}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right),
    \begin{array}{l} \mu _1^2{m^2} < \min \left\{ {\frac{{{a_0}{\gamma ^2}}}{{12{\mu ^2}{S^{*2}}}}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right),\frac{{{a_0}\alpha {\mu ^2}(\mu + \gamma )}}{{c{b^2}}},} \right.\\ \;\;\;\left. {\frac{{8{\mu ^2}(\mu + \gamma )\alpha }}{{3c\gamma {Z^{*2}}}},\frac{{{a_0}\gamma }}{{6{S^{*2}}}},\frac{{2\gamma a_0^2{{\left( {\mu + {a_1}b} \right)}^2}}}{{9{a^2}{b^2}}}\left( {c + \frac{{2\mu \beta {S^*}}}{{\gamma \varphi \left( {{I^*}} \right)}}} \right)} \right\}, \end{array}

    易得LV≤0.因此, 可知在Γ区间, 如果S=S*, I=I*, R=R*, Z=Z*, 则有LV < 0或LV=0.最后, 由LaSalle不变原理可知E*Γ区间是全局渐近稳定的.

    本节将通过一系列的数值例子来验证模型(2)的无病平衡点和地方病平衡点的稳定性.

    例1  模型(2)的参数取值如下:

    p=0.5, b=1, β=0.01, μ=0.01, μ1=0.01, m=0.017, c=0.005, γ=0.001, α=0.8, a=0.01, a0=0.045, a1=1.令φ(I)=1+I2, 可得0=0.669 3 < 1, E0=(54.545 5, 0, 45.454 5, 0)且E*不存在.显然, 图 1A验证了定理3.

    图  1  模型(2)中疾病的灭绝性分析
    Figure  1.  The extinction analysis of disease for model (2)

    此外, 给出了信息强度μ1对传染病的影响.对于模型(2), 给出了关于I(t)的不同参数μ1(μ1=0, μ1=0.10, μ1=0.20)的时间序列(图 1B).可知在疾病爆发期间, 若增加信息强度μ1, 则可以减少感染者的数量并加速疾病的灭绝.

    例2  模型(2)的参数取值如下:

    p=0.5, b=4, β=0.04, μ=0.02, μ1=0.009, m=0.01, c=0.005, γ=0.01, α=0.7, a=0.02, a0=0.045, a1=1.令φ(I)=1+I2, 可知0=3.174 6>1, a2=4.000 0×10-4 < 0.033 1, μ12m2=8.100 00×10-9 < min{6.634 0×10-7, 1.771 9×10-5, 13.889 7, 2.701 6×10-8, 0.050 5}且E0=(93.333 3, 0, 40.000 0, 0), E*=(74.512 9, 1.238 7, 57.371 4, 0.245 9).显然, 图 2A验证了定理4.

    图  2  模型(2)中疾病的持久性分析
    Figure  2.  The persistence analysis of disease for model (2)

    类似地, 给出了在不同的信息强度μ1(μ1=0, μ1=0.10, μ1=0.20)的时间序列I(t)(图 2B).可知若增加信息强度μ1, 则可降低感染者数量.

    本文研究了基于信息干预和疫苗接种的SIRS传染病模型(2), 分析了该模型中无病平衡点和地方病平衡点的局部、全局稳定性.研究结果表明:

    (1) 通过疫苗接种率0, 可以进一步知道疫苗接种如何影响疾病传播.事实上, 0可以被写成如下形式:

    {\Re _0} = - p\frac{{\beta \mu }}{{(\mu + \gamma )(\mu + c + \alpha )}} + \frac{\beta }{{\mu + c + \alpha }}.

    如果增加疫苗接种率p, 则基本再生数0将会减少.换言之, 疫苗接种率的增加可以抑制疾病的传播.

    (2) 疾病爆发时, 信息强度的增加可以降低感染者的数量并且加速疾病的灭亡.

  • 图  1   模型(2)中疾病的灭绝性分析

    Figure  1.   The extinction analysis of disease for model (2)

    图  2   模型(2)中疾病的持久性分析

    Figure  2.   The persistence analysis of disease for model (2)

  • [1]

    BERRHAZI B, FATINI M, LAHROUZ A, et al. A stochastic SIRS epidemic model with a general awareness-induced incidence[J]. Physica A:Statistical Mechanics and its Applications, 2018, 512:968-980. doi: 10.1016/j.physa.2018.08.150

    [2]

    LUH D L, LIU C C, LUO Y R, et al. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan[J]. Journal of Infection and Public Health, 2018, 11:215-223. doi: 10.1016/j.jiph.2017.07.021

    [3]

    DAS P, MUKANDAVIRE Z, CHIYAKA C, et al. Bifurcation and chaos in S-I-S epidemic model[J]. Differential Equations and Dynamical Systems, 2009, 17(4):393-417. doi: 10.1007/s12591-009-0028-4

    [4] 吴敏, 翁佩萱.具有阶段结构的多时滞SIR扩散模型的稳定性[J].华南师范大学学报(自然科学版), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml

    WU M, WENG P X. Stability of a stage-structured diffusive SIR model with delays[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml

    [5]

    CAO B Q, SHAN M J, ZHANG Q M, et al. A stochastic SIS epidemic model with vaccination[J]. Physica A:Statistical Mechanics and its Applications, 2017, 486:127-143. doi: 10.1016/j.physa.2017.05.083

    [6]

    XIAO Y N, TANG S Y, WU J H. Media impact switching surface during an infectious disease outbreak[J]. Scientific Report, 2015, 5:7838/1-9. doi: 10.1038/srep07838

    [7]

    WANG X W, PENG H J, SHI B Y, et al. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model[J]. Communication in Nonlinear Science and Numerical Simulation, 2019, 67:37-48. doi: 10.1016/j.cnsns.2018.07.003

    [8]

    LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with genera-lized non-linear incidence and vaccination[J]. Applied Mathematics and Computation, 2012, 218:6519-6525. doi: 10.1016/j.amc.2011.12.024

    [9] 乔杰, 刘贤宁.考虑疫苗时效及潜伏期的乙肝传染病模型分析[J].西南大学学报(自然科学版), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016

    QIAO J, LIU X L. Analysis of an HBV transmission model with vaccinal effectiveness and latency[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016

    [10]

    BAO K B, ZHANG Q M. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention[J]. Advances in Difference Equations, 2017, 352:1-19. http://d.old.wanfangdata.com.cn/Periodical/yingysx201803027

    [11] 赵晓艳, 明艳, 李学志.一类考虑媒体报道影响的传染病模型分析[J].数学的实践与认识, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046

    ZHAO X Y, MING Y, LI X Z. Analysis of a kind of epidemic model with the impact of media coverage[J]. Mathematics in Practice and Theory, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046

    [12]

    KUMAR A, SRIVASTAVE P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology, 2017, 414:103-119. doi: 10.1016/j.jtbi.2016.11.016

    [13]

    VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathema-tical Biosciences, 2002, 180(1):29-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bafe6f5a607891dd89d1790f875d387

    [14]

    LAWRENCE P. Differential equations and dynamical systems[M]. New York:Springer, 1991.

    [15]

    CASTILLO-CHAVEZ C, FENG Z L, HUANG W Z. On the computation of 0 and its role in global stability[J]. Institute for Mathematics and its Applications, 2002, 125:229-250. https://mathscinet.ams.org/mathscinet-getitem?mr=1938888

  • 期刊类型引用(7)

    1. 李小妮. 一类带时滞的计算机病毒模型的最优控制. 现代信息科技. 2022(12): 136-139 . 百度学术
    2. 陈婉婷,王火莲,郑仙芳,伍慧玲. 基于整体防护的SIR传染病模型的分析与预测. 闽江学院学报. 2022(05): 26-32 . 百度学术
    3. 刘娟,潘玉荣,张子振. 一类具有常数移民特征的时滞SEI传染病模型的周期解. 新乡学院学报. 2022(12): 1-5 . 百度学术
    4. 何雪晴,韦煜明. 受环境扰动的随机SIRS传染病模型的动力学分析. 阜阳师范大学学报(自然科学版). 2021(02): 11-16 . 百度学术
    5. 李小妮. 基于信息干预和治疗的时滞SIRS传染病模型的最优控制. 宁夏师范学院学报. 2021(07): 5-12 . 百度学术
    6. 贾慧鑫,杨军,张然. 面向装备承制单位的SIRS仿真研究. 电子设计工程. 2020(03): 32-37+42 . 百度学术
    7. 张艳霞,李进. 基于SIR模型的新冠肺炎疫情传播预测分析. 安徽工业大学学报(自然科学版). 2020(01): 94-101 . 百度学术

    其他类型引用(6)

图(2)
计量
  • 文章访问数:  2546
  • HTML全文浏览量:  1014
  • PDF下载量:  91
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-09-20
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2019-10-24

目录

/

返回文章
返回