类不变子空间与不变子空间的关系

The Relationship between Similar Invariant Subspaces and Invariant Subspaces

  • 摘要: 给出了“类不变子空间”的定义,研究了可逆线性变换和一般线性变换的类不变子空间与不变子空间的关系:利用向量空间的理论,证明了对于可逆线性变换,类不变子空间与不变子空间是等价的;进一步证明对于非可逆的线性变换,类不变子空间是不变子空间,反之不成立.

     

    Abstract: The concept of "similar invariant subspace" is defined and the relationship between similar invariant subspace and invariant subspace under the conditions of reversible linear transformation and general linear transformation is discussed. Using the theory of vector space, it is proved that similar invariant subspace is equivalent to invariant subspace under the condition of reversible linear transformation. Furthermore, it is proved that for a linear transformation σ of vector space V, if W is a similar invariant subspace, W must be an invariant subspace.

     

/

返回文章
返回