表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用

何佩玲, 陈时远, 胡小刚

何佩玲, 陈时远, 胡小刚. 表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061
引用本文: 何佩玲, 陈时远, 胡小刚. 表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061
HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061
Citation: HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061

表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用

基金项目: 

国家自然科学基金项目 21775048

广东省科技计划项目 2013B091500093

广东省自然科学基金项目 2017A030313060

详细信息
    通讯作者:

    胡小刚,教授,Email:huxg@scnu.edu.cn

  • 中图分类号: O65

Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid

  • 摘要: 以L-谷氨酸为模板分子、2-丙烯酰胺-2-甲基丙磺酸为功能单体、N, N-亚甲基双丙烯酰胺为交联剂,采用可逆加成-断裂链转移活性自由基聚合法制备表面分子印迹固相萃取(MISPE)微球,并对制备的印迹微球进行傅立叶变换红外光谱、扫描电镜、热重分析等表征.萃取实验结果表明:该微球可实现L-谷氨酸的选择性分离富集,萃取容量为140 μg/g.结合MISPE方法与高效液相色谱检测技术,可实现酱油中L-谷氨酸的快速分析检测,线性范围为1.47~58.9 μg/mL,检出限为44.1 ng/mL,加标回收率为77.8%~82.2%.
    Abstract: Molecularly imprinted solid-phase extraction (MISPE) microspheres were prepared using L-glutamic acid, 2-acrylamido-2-methyl propane sulfonic acid and N, N-methylene bis-acrylamide as template, functional monomer and cross-linker respectively and using the reversible addition-fragmentation chain transfer polymerization. Then the imprinted silica gel microspheres were characterized with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). The results of the extraction experiment showed that MIPs exhibited excellent performance in separating glutamic acid from soy sauce, and an extraction capacity up to 140 μg/g was achieved. The rapid analysis of L-glutamic was realized by combining MISPE with high performance liquid chromatography technology. The linearity of L-glutamic acid was 1.47~58.9 μg/mL and the detection limit was 44.1 ng/mL. The recovery rate was 77.8%~82.2%.
  • 图  1   印迹硅胶微球制备流程的示意图

    Figure  1.   The sketch diagram of preparation procedures for imprinted silica microspheres

    图  2   不同微球的红外光谱

    a.硅烷化硅胶微球; b.RAFT功能化硅胶微球; c.印迹硅胶微球

    Figure  2.   The infrared spectra of different microspheres

    图  3   空白硅胶微球和印迹硅胶微球的SEM图

    Figure  3.   The SEM of silica microspheres and imprinted silica microspheres

    图  4   空白硅胶微球及印迹硅胶微球的热重曲线

    Figure  4.   The thermogravimetric curve of blank silica microspheres and imprinted silica microspheres

    图  5   MISPE柱和NISPE柱对不同浓度L-Glu的萃取容量及印迹因子曲线

    Figure  5.   The amounts of L-Glu acid adsorbed by MISPE column and NISPE column and the curve of imprinting factor

    图  6   谷氨酸及其他5种氨基酸对照物的分子结构式

    Figure  6.   The molecular structure of glutamic acid and other five amino acid controls

    图  7   MISPE柱和NISPE柱对不同氨基酸的萃取容量

    Figure  7.   The amounts of several kinds of amino acid extracted by MISPE column and NISPE column

    图  8   MISPE柱重复使用次数对L-Glu萃取容量的影响

    Figure  8.   The effect of reuse times on the amount of L-Glu extracted by the MISPE

    图  9   酱油原液的液相解析谱

    Figure  9.   The HPLC chromatograms of the soy sauce stock solution

    图  10   1.47 μg/mL的L-Glu加标生抽洗脱液解析谱

    Figure  10.   The HPLC chromatograms of the centrifugal liquid of brew soy sauce with addition of 1.47 μg/mL of L-Glu

    表  1   酱油原液、加标生抽样品中L-Glu回收率

    Table  1   The recovery rates of L-Glu acid in spiked soy sauce and feed solution of soy sauce

    样品 添加质量浓度/(μg·mL-1) 检测质量浓度/(μg·mL-1) 回收率/% RSD/%
    酱油原液 0 32.1 - -
    1.47 33.3 82.2 4.7
    7.35 37.8 77.8 3.5
    生抽 0 15.7 - -
    1.47 16.9 80.6 4.8
    7.35 22.7 78.4 4.4
    下载: 导出CSV
  • [1]

    ASHIUCHI M, FUKUSHIMA K, OYA H, et al. Development of antimicrobial thermoplastic material from archaeal poly-γ-L-glutamate and its nanofabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(5):1619-1624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f94025f0f6ab9f702f6bd758f2f121a

    [2]

    HUTCHINGS J A, SHIELDSM R, BIANCHI T S, et al. A rapid and precise method for the analysis of underivatized amino acids in natural samples using volatile-ion-pairing reverse-phase liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Organic Geochemistry, 2018, 115:46-56. doi: 10.1016/j.orggeochem.2017.10.007

    [3]

    PEI D N, ZHANG A Y, PAN X Q, et al. Electrochemical sensing of Bisphenol A on facet-tailored TiO2 single crystals engineered by inorganic-framework molecular imprinting sites[J]. Analytical Chemistry, 2018, 90(5): 3165-3173. doi: 10.1021/acs.analchem.7b04466

    [4]

    XIE C, ZHOU H, GAO S, et al. Molecular imprinting met-hod for on-line enrichment and chemiluminescent detection of the organophosphate pesticide triazophos[J]. Microchimica Acta, 2010, 171(3/4):355-362.

    [5]

    QIN Y P, JIA C, HE X W, et al. Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation-precipitation polymerization for simultaneous recognition of human serum albumin and transferrin[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9060-9068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45ce3e43084efc730dfb232df1ed887f

    [6] 胡小刚, 汤又文.分子印迹聚合物制备技术研究进展[J].华南师范大学学报(自然科学版), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027

    HU X G, TANG Y W. Progress in preparation technique of molecularly imprinted polymer[J]. Journal of South China Normal University (Natural Science Edition), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027

    [7] 陈忻, 陈晓刚, 潘嘉慧, 等.莱克多巴胺新型分子印迹纳米管膜的研究及应用[J].华南师范大学学报(自然科学版), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008

    CHEN Q, CHEN X G, PAN J H, et al. Novel molecularly imprinted polymer nanotube membranes for ractopamine[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008

    [8]

    HU X, PAN J, HU Y, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. Journal of Chromatography A, 2008, 1188(2):97-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1688a76e2861133073cb4c762ca5075

    [9] 胡小刚, 汤又文.分子印迹固相萃取-紫外分光光度法测定阿司匹林的研究[J].华南师范大学学报(自然科学版), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017

    HU X G, TANG Y W. The quantitative analysis of aspirin by molecularly imprinted solid-phase extraction technique[J]. Journal of South China Normal University(Natural Science Edition), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017

    [10]

    SONG Z, HUANG Y, PRASAD V, et al. Preparation of surfactant-resistant polymersomes with ultrathick Membranes through RAFT dispersion polymerization[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17033-17037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccabb81baa65fa79b3abdfae8f2d0a9b

    [11]

    GANACHAUD F, MONTEIRO M J, GILBERT R G, et al. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization[J]. Macromolecules, 2000, 33(18):6738-6745. doi: 10.1021/ma0003102

    [12]

    SOYLEMEZ M A, GUVEN O, BARSBAY M. Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization[J]. European Polymer Journal, 2018, 103:21-30. doi: 10.1016/j.eurpolymj.2018.03.037

    [13]

    CHEN F, WANG J, CHEN H, et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues[J]. Applied Surface Science, 2018, 435:247-255. doi: 10.1016/j.apsusc.2017.11.061

    [14]

    ROMANO E F, SO R C, DONNE S W, et al. Preparation and binding evaluation of histamine-imprinted microspheres via conventional thermal and RAFT-mediated free-radical polymerization[J]. ACS Omega, 2016, 1(4):518-531. doi: 10.1021/acsomega.6b00144

    [15]

    SHANMUGAM S, CUTHBERT J, KOWALEWSKI T, et al. Catalyst-free selective photoactivation of RAFT polymerization:a facile route for preparation of comblike and bottlebrush polymers[J]. Macromolecules, 2018, 51(19):7776-7784. doi: 10.1021/acs.macromol.8b01708

    [16]

    COSSON S, DANIAL M, SAINT-AMANS J R, et al. Accelerated combinatorial high throughput star polymer synthesis via a rapid one-pot sequential aqueous RAFT (rosa-RAFT) polymerization scheme[J]. Macromolecular Rapid Communications, 2017, 38(8):1600780/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d5ca08f9dc0be1f4f9c573feb4ce93d

    [17]

    ZHAO M, CHEN X, ZHANG H, et al. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry[J]. Biomacromolecules, 2014, 15(5):1663-1675. doi: 10.1021/bm500086e

  • 期刊类型引用(0)

    其他类型引用(11)

图(10)  /  表(1)
计量
  • 文章访问数:  2104
  • HTML全文浏览量:  662
  • PDF下载量:  57
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-10-22
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回