Bloch-Orlicz型空间上的一类紧积分型算子

A Class of Compact Integral-Type Operators on Bloch-Orlicz Type Spaces

  • 摘要: 设D是复平面C中的单位圆盘,H(D)表示D上的解析函数全体,定义积分型算子 C_? I_g (f)(z)=_0^(?(z))?〖f^' ()g()d〗, 其中?是D到自身的解析映射,gH(D),本文运用函数z^n给出积分型算子C_? I_g在Bloch-Orlicz型空间上的紧性的一种新刻画.

     

    Abstract: Let D be the open unit disk in the complex planeC, H(D) the class of all holomorphic functions onD. An integral-type operator is defined by C_? I_g (f)(z)=_0^(?(z))?〖f^' ()g()d〗, where ? be an analytic self-map of D and gH(D). This note gives a new compactness criterion of integral C_? I_g on Bloch-Orlicz type spaces in terms of the function z^n.

     

/

返回文章
返回