关于不定方程x2+4n=y9的整数解

The integer solutions of the Diophantine equation

  • 摘要: 该文首先应用代数数论的方法证明了不定方程~x^2+4^n=y^9~在~x\equiv 1 \pmod2 时无整数解, 再证明不定方程~x^2+4^n=y^9~在~n \in\6, 7, 8\~ 时均无整数解, 进而证明不定方程~x^2+4^n=y^9~仅当~n\equiv 0 \pmod9~和~n\equiv 4 \pmod9 时有整数解, 且当~n=9m~时, 其整数解为~(x,y)=(0,4^m); 当~n=9m+4~时, 其整数解为~(x,y)=(\pm16\times2^9m,2\times4^m),~ 这里的~m~为非负整数. 进一步, 根据~k=5,9 的结论, 文章提出了一个关于不定方程~x^2+4^n=y^k (k 为奇数) 的整数解的猜想, 以供后续研究.

     

    Abstract: his paper proves that the Diophantine equation ~x^2+4^n=y^9~ has no integer solution by using the method of algebraic number theory, where ~x\equiv 1\pmod2~, and further shows that the Diophantine equation ~x^2+4^n=y^9~(n=6,7,8) has no integer solution. Then it shows that the Diophantine equation ~x^2+4^n=y^9~ has integer solution only when ~n\equiv 0 \pmod9~ and ~n\equiv 4 \pmod9, say, the Diophantine equation ~x^2+4^n=y^9~ has integer solutions ~(x,y)=(0,4^m)~ when n=9m, and the Diophantine equation ~x^2+4^n=y^9~ has integer solutions ~(x,y)=(\pm16\times2^9m,2\times4^m)~ when n=9m+4, where n\in N. Furthermore, based on the results of k=5,9, the paper proposes a conjecture about the integer solutions of the Diophantine equation ~x^2+4^n=y^k for further research, where k is odd.

     

/

返回文章
返回