薛益民, 戴振祥, 刘洁. 一类Riemann-Liouville型分数阶微分方程正解的存在性[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 105-109. DOI: 10.6054/j.jscnun.2019033
引用本文: 薛益民, 戴振祥, 刘洁. 一类Riemann-Liouville型分数阶微分方程正解的存在性[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 105-109. DOI: 10.6054/j.jscnun.2019033
XUE Yimin, DAI Zhenxiang, LIU Jie. Existence of Solutions of the Boundary Value Problem to a Nonlinear Riemann-Liouville Fractional Differential Equations[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 105-109. DOI: 10.6054/j.jscnun.2019033
Citation: XUE Yimin, DAI Zhenxiang, LIU Jie. Existence of Solutions of the Boundary Value Problem to a Nonlinear Riemann-Liouville Fractional Differential Equations[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 105-109. DOI: 10.6054/j.jscnun.2019033

一类Riemann-Liouville型分数阶微分方程正解的存在性

Existence of Solutions of the Boundary Value Problem to a Nonlinear Riemann-Liouville Fractional Differential Equations

  • 摘要: 文章研究一类非线性RiemannLiouville型分数阶微分方程边值问题解的存在性.利用格林函数的性质和Guo-Krasnosel'skii's不动点定理,得到该边值问题解存在性的充分条件,并举例说明主要结论的适用性.

     

    Abstract: In this paper, we studied the existence of solutions of the boundary value problem to a nonlinear Riemann-Liouville fractional differential equations. The existence of solutions was obtained by using the properties of the associated Greens function and Guo-Krasnosel'skii's fixed point theorem. Then one example illustrating our main results was included.

     

/

返回文章
返回