一类三次时滞积分方程数值分析

Numerical Analysis for Cubic Delay Integral Equation

  • 摘要: 主要对一类三次时滞积分方程进行数值分析. 首先进行两次线性变换, 然后利用Gauss积分法则进行离散化, 紧接着求近似解, 再利用Chebyshev谱配置法以及Gronwall不等式等相关引理获得方程精确解与逼近解之间的误差在无穷空间和加权L2范数空间均呈指数衰减的结论, 最后数值算例表明该方法的可行性和有效性.

     

    Abstract: Numerical analysis is proposed for the integral equation with cubic delay in this article. Firstly, make two linear variable transformation. Then use the Gauss quadrature formula to get the approximate solution. And then with the Chebyshev spectral-collocation method、the Gronwall inequality and some other lemmas, a rigorous analysis is provided. The conclusion is that the numerical error decay exponentially in the L^\inftyspace and L^2_\omega^c space. In the end, numerical example is given to show the feasibility and effectiveness of the Chebyshev spectral collocation method.

     

/

返回文章
返回