基于脑电信号在复杂场景下的联合算法

A Joint Algorithm for Electroencephalographic Signals in Complex Scenes

  • 摘要: 在基于快速傅里叶变换的联合算法和基于支持向量机的联合算法的基础之上,文中提出了一种复杂场景下针对5类以上脑电信号处理的新型联合算法. 目的在于提升脑电信号处理与分析的精度与综合效率. 新型联合算法首先采取归一化进行数据预处理,然后融合快速傅里叶变换和主成分分析进行特征提取,最终以加权k近邻分类算法进行特征分类,应用于被试观察0~9数字时产生的脑电信号分类. 结果证明:新型联合算法的精度和综合效率分别为84%和87%,可以运用于复杂场景下的脑电信号处理.

     

    Abstract: Based on the Fast Fourier transform and Support Vector Machine joint algorithm, this paper proposes a new EEG signal processing joint algorithm in the complex scene for more than five kinds of EEG signals. This new algorithm improves the accuracy and comprehensive efficiency of EEG signal processing. Firstly,the EEG data are normalized,then Fast Fourier transform and Principal Component Analysis are applied for feature extraction,the weighted k-nearest neighbor classification algorithm is finally employed to classify the EEG signals of watching digits 0~9. The result demonstrates that accuracy and comprehensive efficiency of the new joint algorithm are 84% and 87% respectively, which indicates that the proposed joint algorithm can be applied in the complex scene for mulit-categories EEG signal processing.

     

/

返回文章
返回