黄丙远. 二维不可压缩 Navier--Stokes--Landau--Lifshitz 方程组的整体强解[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 113-118. DOI: 10.6054/j.jscnun.2017167
引用本文: 黄丙远. 二维不可压缩 Navier--Stokes--Landau--Lifshitz 方程组的整体强解[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 113-118. DOI: 10.6054/j.jscnun.2017167
Huang Bingyuan. Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6): 113-118. DOI: 10.6054/j.jscnun.2017167
Citation: Huang Bingyuan. Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6): 113-118. DOI: 10.6054/j.jscnun.2017167

二维不可压缩 Navier--Stokes--Landau--Lifshitz 方程组的整体强解

Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations

  • 摘要: 考虑了不可压缩 Navier--Stokes--Landau--Lifshitz 耦合模型在二维空间中的Cauchy 问题, 假设在初值密度满足\rho_00及初值能量具备\|\rho_0^\frac12\mathbfu_0\|_L^2^2+\|\nabla\mathbfd_0\|_L^2^2 \varepsilon_0足够小的条件下, 利用能量方法证明了整体强解的存在唯一性.

     

    Abstract: The Cauchy problem for incompressible Navier--Stokes--Landau--Lifshitz equations in two-dimensional space is solved by the following assumptions:the initial density satisfies \rho_00,the initial energy \|\rho_0^\frac12\mathbfu_0\|_L^2^2+\|\nabla\mathbfd_0\|_L^2^2 \varepsilon_0 is suitably small,and the global existence and uniqueness of the strong solutions are proved by energy method.

     

/

返回文章
返回