Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations
-
摘要: 考虑了不可压缩 Navier--Stokes--Landau--Lifshitz 耦合模型在二维空间中的Cauchy 问题, 假设在初值密度满足ρ00及初值能量具备‖ρ120u0‖2L2+‖∇d0‖2L2ε0足够小的条件下, 利用能量方法证明了整体强解的存在唯一性.
-
关键词:
- 整体存在性
Abstract: The Cauchy problem for incompressible Navier--Stokes--Landau--Lifshitz equations in two-dimensional space is solved by the following assumptions:the initial density satisfies ρ00,the initial energy ‖ρ120u0‖2L2+‖∇d0‖2L2ε0 is suitably small,and the global existence and uniqueness of the strong solutions are proved by energy method.-
Keywords:
- global existence
-
-
[1]Fan J, Gao H, Guo B.Regularity criteria for the Navier--Stokes--Landau--Lifshitz system[J].Journal of Mathematical Analysis and Applications, 2010, 363(1):29-37 [2]Zhai X, Li Y, Yan W.Global solutions to the Navier--Stokes--Landau--Lifshitz system[J]., 2015, :- [3]Jun Choe H, Kim H.Strong solutions of the Navier--Stokes equations for nonhomogeneous incompressible fluids[J].Communications in Partial Differential Equations, 2003, 28(5):1183-1201 [4]Kim H.A Blow Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations[J].SIAM journal on mathematical analysis, 2006, 37(5):1417-1434 [5]GUO B L, DING S J.Landau-Lifschitz Equations[M]. Singapore, World Scientific, 2008. [6]Wen H Y, Ding S J.Solutions of incompressible hydrodynamic flow of liquid crystals[J].Nonlinear Analysis: Real World Applications, 2011, 12(3):1510-1531 [7]Lin F H, Lin J Y, Wang C Y.Liquid crystal flows in two dimensions[J].Arch. Ration. Mech. Anal, 2010, 197(1):297-336 [8]Ding S J, Huang J R, Xia F G.Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum[J].Filomat, 2013, 27(7):1247-1257 [9]丁时进.液晶模型的分析理论[J].华南师范大学学报自然科学版, 2013, 45(3):1-7 [10]Huang T, Wang C Y, Wen H Y.Strong solutions of the compressible nematic liquid crystal flow[J].J. Diff. Eqs, 2012, 252(3):2222-2265 [11]Nirenberg L.On elliptic partial differential equations[J].Annali della Scuola Normale Superiore di Pisa--Classe di Scienze, 1959, 13(2):115-162 [12]Ladyzhenskaya O A, Solonnikov V A.Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids[J].Journal of Soviet Mathematics, 1978, 9(5):697-749 [13]Galdi G P.An introduction to the mathematical theory of the Navier-Stokes equations. Linearized Steady Problems, Vol.1, Springer Tracts in Natural Philosophy. Vol.38[M], New York, Springer-Verlag, 1994. [1]Fan J, Gao H, Guo B.Regularity criteria for the Navier--Stokes--Landau--Lifshitz system[J].Journal of Mathematical Analysis and Applications, 2010, 363(1):29-37 [2]Zhai X, Li Y, Yan W.Global solutions to the Navier--Stokes--Landau--Lifshitz system[J]., 2015, :- [3]Jun Choe H, Kim H.Strong solutions of the Navier--Stokes equations for nonhomogeneous incompressible fluids[J].Communications in Partial Differential Equations, 2003, 28(5):1183-1201 [4]Kim H.A Blow Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations[J].SIAM journal on mathematical analysis, 2006, 37(5):1417-1434 [5]GUO B L, DING S J.Landau-Lifschitz Equations[M]. Singapore, World Scientific, 2008. [6]Wen H Y, Ding S J.Solutions of incompressible hydrodynamic flow of liquid crystals[J].Nonlinear Analysis: Real World Applications, 2011, 12(3):1510-1531 [7]Lin F H, Lin J Y, Wang C Y.Liquid crystal flows in two dimensions[J].Arch. Ration. Mech. Anal, 2010, 197(1):297-336 [8]Ding S J, Huang J R, Xia F G.Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum[J].Filomat, 2013, 27(7):1247-1257 [9]丁时进.液晶模型的分析理论[J].华南师范大学学报自然科学版, 2013, 45(3):1-7 [10]Huang T, Wang C Y, Wen H Y.Strong solutions of the compressible nematic liquid crystal flow[J].J. Diff. Eqs, 2012, 252(3):2222-2265 [11]Nirenberg L.On elliptic partial differential equations[J].Annali della Scuola Normale Superiore di Pisa--Classe di Scienze, 1959, 13(2):115-162 [12]Ladyzhenskaya O A, Solonnikov V A.Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids[J].Journal of Soviet Mathematics, 1978, 9(5):697-749 [13]Galdi G P.An introduction to the mathematical theory of the Navier-Stokes equations. Linearized Steady Problems, Vol.1, Springer Tracts in Natural Philosophy. Vol.38[M], New York, Springer-Verlag, 1994.
-
期刊类型引用(2)
1. 刘楠,任永华,张建文. 二维不可压缩Navier-Stokes-Landau-Lifshitz方程组的全局强解. 应用数学. 2024(01): 148-158 . 百度学术
2. 刘新,张建文,任永华. 三维变密度不可压缩Navier-Stokes-Landau-Lifshitz方程组的整体强解. 纯粹数学与应用数学. 2024(03): 465-474 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1780
- HTML全文浏览量: 184
- PDF下载量: 239
- 被引次数: 4