超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能

赵瑞瑞, 梁家星, 杨子莲, 梁昌铖, 关熊聪, 高爱梅, 陈红雨

赵瑞瑞, 梁家星, 杨子莲, 梁昌铖, 关熊聪, 高爱梅, 陈红雨. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104
引用本文: 赵瑞瑞, 梁家星, 杨子莲, 梁昌铖, 关熊聪, 高爱梅, 陈红雨. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104
ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104
Citation: ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104

超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能

基金项目: 

教育部;广东省发展改革委员会;华南师范大学青年教师培养基金;高等学校博士学科点专项科研基金

详细信息
    通讯作者:

    梁家星

  • 中图分类号: O64

Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time

  • 摘要: 通过超声微波共沉淀法制备一系列纳米正极材料Li1.2Ni0.2Mn0.6O2。通过X射线衍射,扫描电镜,X射线光电子能谱和电化学方法研究超声时间对合成材料的影响。结果表明反应时间为2h时,材料表现出最优异的电化学性能,其在0.1C和2C倍率下的容量分别为265mAh.g-1 和180mAh.g-1。材料优异的电化学性能取决于其均一的颗粒粒径,理想的元素分布和高反应活性的氧化还原电对。超声微波系统可以在富锂材料的实际生产中起到良好的辅助作用,它使用方便,且能够节约时间。
    Abstract: A series of nanocrystalline lithium-rich cathode materials (Li1.2Ni0.2Mn0.6O2) have been prepared via an ultrasonic/microwave-assisted co-precipitation method. The effects of the ultrasonic time are emphasis investigated by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements. The optimum reaction time is 2h, while the sample can exhibit the best electrochemical properties with an initial discharge capacity of 265mAh.g-1 at 0.1C and 180mAh-1 at 2C after 90 cycles, respectively. The superior electrochemical performance of this material can be attributed to the uniform particles, desired element distribution and high activities of the redox couples in the bulk material. This study also suggests that the ultrasonic/microwave system can be a good assistant in the practical Li-rich material production, while it can be easy to use and time-saving.
  • [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019

    [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019

  • 期刊类型引用(1)

    1. 王媛,杨茹,缪建麟,赵瑞瑞. 一步法回收锂离子电池三元正极材料及其性能影响. 华南师范大学学报(自然科学版). 2021(01): 36-41 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1448
  • HTML全文浏览量:  160
  • PDF下载量:  253
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2015-12-24
  • 刊出日期:  2017-04-24

目录

    /

    返回文章
    返回