李文娟, 李书海, 汤获, 敖恩. k 次对称近于凸函数新子类的某些性质[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 99-103. DOI: 10.6054/j.jscnun.2017034
引用本文: 李文娟, 李书海, 汤获, 敖恩. k 次对称近于凸函数新子类的某些性质[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 99-103. DOI: 10.6054/j.jscnun.2017034
SOME PROPERTIES OF A NEW SUBCLASS OF k-FOLD SYMMETRY CLOSE-TO-CONVEX FUNCTIONS[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(3): 99-103. DOI: 10.6054/j.jscnun.2017034
Citation: SOME PROPERTIES OF A NEW SUBCLASS OF k-FOLD SYMMETRY CLOSE-TO-CONVEX FUNCTIONS[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(3): 99-103. DOI: 10.6054/j.jscnun.2017034

k 次对称近于凸函数新子类的某些性质

SOME PROPERTIES OF A NEW SUBCLASS OF k-FOLD SYMMETRY CLOSE-TO-CONVEX FUNCTIONS

  • 摘要: 本文引进并研究了单位圆盘内的 k次对称近于凸函数新子类. 首先用从属关系和初等方法讨论该类中函数的性质, 得到积分表达式, 系数估计, 偏差定理. 所得结论推广了一些作者的相关结果; 然后结合线性拓扑空间理论进一步讨论该类函数的端点性质, 得到有趣的新结果.

     

    Abstract: In this paper, we introduce and investigate a new subclass of k-fold symmetry close-to-convex functions in the open disc. For functions belonging to the above subclass, firstly we drive several properties including integral expression, coefficient estimates and distortion theorems using subordination and primary method. The results obtained generalize some known results. Finally, with the help of the linear topological space theory, we further discuss the end-point property and get some interesting new results.

     

/

返回文章
返回