一类由积分算子定义的p-叶解析函数的性质

Properties of Certain Subclasses of p-Valent Analytic Functions Defined by an Integral Operator

  • 摘要: 利用卷积和广义Hurwitz-Lerch 函数(z,s,a)定义了广义Srivastava-Attiya 积分算子,研究了一些由广义Srivastava-Attiya 积分算子定义的p-叶解析函数类,证明了它们的一些包含关系以及积分保持的性质.

     

    Abstract: The generalized Srivastava-Attiya integral operator is defined by convolution and Generalized Hurwitz-Lerch zeta function (z,s,a). Certain new subclasses of p-valent analytic functions involving the generalized Sri-vastava-Attiya integral operator are introduced and studied. Some inclusion relations along with integral preserving properties of these classes are obtained.

     

/

返回文章
返回