基于混合算法求解ELSP问题的可行域分析

Analysis of the Feasible Domain of ELSP Problems Based on Hybrid Algorithms

  • 摘要: 本文给出求解ELSP问题(Economic Lot Scheduling Problem)的可行域的特征、启发式规则和演化神经网络设计问题.经济批量问题采用基本时段方法表示,该方法产生两类决策变量,一种是表示基本时间段的连续变量,另一种是表示时间倍数的整数变量.在求解ELSP问题的算法设计中,可行域是判定启发式规则有效性的基础.为了给出可行域的特征,利用神经网络的演化计算,设计求ELSP问题的初值算法,设计演化参数函数、网络结构、演化函数、演化规则,并依此获得可行域的约束条件.对在可行域约束条件和启发式规则下设计的算法进行测试,并与用HGA和一般GA方法求解ELSP问题进行比较,求解效果明显提高,使得在满足可行性的前提下总费用减小.

     

    Abstract: This article provides analysis characteristics of finding feasible solution domain, heuristic strategies andalgorithm of Recurrent NN (Neural Network) for the ELSP problems,which can be described in basic time method. This method produces two kinds of decision variables, one is the continuous variables for the basic period of time, and the other is the integer variables for the multiple of time. In the design algorithm for solving the ELSP problem, the characteristic information of the feasible domain determines the effectiveness of the heuristic strategies. In order to solve ELSP problems, it must be required an effective the heuristic strategies. Our research results show thatthe characteristic of feasible solution domain improve the effectiveness of the heuristic strategies. Based on advantages of evolution computing of neural network, the paper designs algorithms for solving initial values of ESLP problem, which including evolving function, network structure, evolution function and strategies, so that constrained conditions of feasible solution domain is given. The paper suggested algorithms employed feasible domain conditions and heuristic strategies, comparing with HGA and traditonal GA methods for solving ESLP problem, The test results show that the effect of computing is significantly improved and the total cost decreases.

     

/

返回文章
返回