陈燕萍, 王克彦. 非线性双曲型方程的混合有限元两层网格算法[J]. 华南师范大学学报(自然科学版), 2016, 48(3): 1-6. DOI: 10.6054/j.jscnun.2016.05.013
引用本文: 陈燕萍, 王克彦. 非线性双曲型方程的混合有限元两层网格算法[J]. 华南师范大学学报(自然科学版), 2016, 48(3): 1-6. DOI: 10.6054/j.jscnun.2016.05.013
CHEN Y P, WANG K Y. TwoGrid Scheme for the Mixed Finite Element Approximations of Nonlinear Hyperbolic Equations[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(3): 1-6. DOI: 10.6054/j.jscnun.2016.05.013
Citation: CHEN Y P, WANG K Y. TwoGrid Scheme for the Mixed Finite Element Approximations of Nonlinear Hyperbolic Equations[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(3): 1-6. DOI: 10.6054/j.jscnun.2016.05.013

非线性双曲型方程的混合有限元两层网格算法

TwoGrid Scheme for the Mixed Finite Element Approximations of Nonlinear Hyperbolic Equations

  • 摘要: 针对一类非线性双曲型方程, 利用混合有限元法,构造了1种混合有限元两层网格算法, 给出了两网格方法的误差分析. 结果表明, 当两层网格算法所选取的粗网格和细网格步长满足H=б(h^1/2)时,能获得渐近最优的离散逼近解. 并用数值例子验证了该混合有限元两层网格算法的有效性.

     

    Abstract: A combination method of mixed finite element method and twogrid scheme is constructed for solving numerically the twodimensional nonlinear hyperbolic equations. Error estimate are derived in detail. It is shown that two grid algorithm achieve asymptotically optimal approximation of discrete solution as long as the mesh sizes satisfyH=б(h^1/2). Numerical example is presented to verify the efficiency and accuracy of the proposed numerical algorithm.

     

/

返回文章
返回