组蛋白促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积

杨绮琳, 陈琳琳, 李南希, 李红

杨绮琳, 陈琳琳, 李南希, 李红. 组蛋白促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 62-0. DOI: 10.6054/j.jscnun.2015.12.038
引用本文: 杨绮琳, 陈琳琳, 李南希, 李红. 组蛋白促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 62-0. DOI: 10.6054/j.jscnun.2015.12.038
Anodic co-deposition of [Ru(bpy)2(dppz)]2+ and MWCNTs on an ITO electrode promoted by histone[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(3): 62-0. DOI: 10.6054/j.jscnun.2015.12.038
Citation: Anodic co-deposition of [Ru(bpy)2(dppz)]2+ and MWCNTs on an ITO electrode promoted by histone[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(3): 62-0. DOI: 10.6054/j.jscnun.2015.12.038

组蛋白促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积

基金项目: 

国家自然科学基金项目;广东省自然科学基金

详细信息
    通讯作者:

    李红

  • 中图分类号: O657.1

Anodic co-deposition of [Ru(bpy)2(dppz)]2+ and MWCNTs on an ITO electrode promoted by histone

  • 摘要: 应用计时库仑法、循环伏安法、微分脉冲伏安法、荧光光谱和扫描电镜等方法研究了组蛋白(His)、[Ru(bpy)2(dppz)]2+(bpy = 2,2-联吡啶,dppz = 邻联二吡啶[3,2-a:2,3-c]吩嗪)和多壁碳纳米管(MWCNTs)在铟锡氧化物(ITO)电极上的电化学共沉积。结果表明,His能促进[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上的阳极共沉积(1.2 V vs. Ag/AgCl),所获得的复合膜呈现两对由表面电化学过程控制的氧化还原峰;通过研究His浓度和pH值对复合膜中Ru(III)/Ru(II)氧化还原反应的影响,阐明了His作为媒介体调控[Ru(bpy)2(dppz)]2+和MWCNTs在ITO电极上共沉积的机理。在最优化条件下,复合物中[Ru(bpy)2(dppz)]2+发生氧化的电量在0.01~0.2 mgL-1和0.2~5.0 mgL-1区间内与His浓度呈线性关系,其线性回归方程分别为Q/C = 3.24(0.27) 10-6 + 2.95 (0.09) 10-4 CHis/mgL-1 (R = 0.993)和Q/C = 5.92(0.25) 10-5 + 6.26 (0.62) 10-6 CHis/mgL-1 (R = 0.998)。该研究提供的新方法可以应用于具有良好氧化还原性能的无机生物纳米复合材料的制备及蛋白质的固定与检测。
    Abstract: The electrochemical co-deposition of histone (His), [Ru(bpy)2(dppz)]2+ (bpy = 2,2-bipyridine and dppz = dipyrido[3,2-a:2,3-c]phenazine) and multi-walled carbon nanotubes (MWCNTs) on an indium-tin oxide (ITO) electrode has been investigated by means of chronocoulometry, cyclic voltammetry, differential pulse voltammetry, fluorescence spectroscopy and scanning electron microscopy. The presence of His is found to promote the co-deposition of [Ru(bpy)2(dppz)]2+ and MWCNTs on the ITO electrode added at 1.2 V vs. Ag/AgCl. The prepared composite film shows two pairs of redox peaks controlled by surface electrochemical processes. Combined with the effects of His concentration and pH on the Ru(III)/Ru(II)-based redox reactions of the composite film, the electrochemical co-deposition mechanism of [Ru(bpy)2(dppz)]2+ and MWCNTs on the ITO electrode mediated by His is further illustrated. Under the optimal conditions, the oxidative charges of [Ru(bpy)2(dppz)]2+ in the composite film show a linear increase in the His concentration ranged between 0.01 ~ 0.2 mgL-1 and 0.2 ~ 5.0 mgL-1, the regression equations are described as Q/C = 3.24(0.27) 10-6 + 2.95 (0.09) 10-4 CHis/mgL-1 (R = 0.993) and Q/C = 5.92(0.25) 10-5 + 6.26 (0.62) 10-6 CHis/mgL-1 (R = 0.998). This study provides a new approach for the fabrication of redox-active inorganic bio-nanomaterials, as well as the immobilization and detection of proteins.
  • [1] Hirsch R, Katz E, Willner I. Magneto-switchable bioelectrocatalysis[J]. Journal of the American Chemical Society, 2000, 122:12053-12054.
    [2] Rusling J F, Nassar A E F. Enhanced electron transfer for myoglobin in surfactant films on electrodes[J]. Journal of the American Chemical Society, 1993, 115:11891-11897.
    [3] Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events[J]. Journal of the American Chemical Society, 2004, 126:3010-3011.
    [4] Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L. Direct electron transfer between copper-containing proteins and electrodes[J]. Biosensors & Bioelectronics, 2005, 20:2517-2554.
    [5] 韩楠楠, 王慧, 栗娜, 周剑章, 林仲华, 吴迪, 万国江. 电沉积制备ZnO纳米棒修饰电极上氧化还原蛋白的电化学行为[J]. 物理化学学报, 2011, 27:468-472.
    Han N N, Wang H, Li N, Zhou J Z, Lin Z H, Wu D, Wan G J. Electrochemical behavior of redox proteins on ZnO nanorod-modified electrodes prepared by electrodeposition[J]. Acta Physico-Chimica Sinica, 2011, 27:468-472.
    [6] Liu G, Gooding J J. An interface comprising molecular wires and poly(ethylene glycol) spacer units self-assembled on carbon electrodes for studies of protein electrochemistry[J]. Langmuir, 2006, 22:7421-7430.
    [7] Smauel T, Kolk A H, Rümke P, Aarden L A, Bustin M. Histone and DNA detection in swollen spermatozoa and somatic cells, by immunofluorescence[J]. Clinical and Experimental Immunology, 1976, 24:63-71.
    [8] Cai H, Cao X, Jiang Y, He P G, Fang Y Z. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection[J]. Analytical and Bioanalytical Chemistry, 2003, 375:287-293.
    [9] Wang J, Electrochemical biosensors: Towards point-of-care cancer diagnostics[J]. Biosensors & Bioelectronics, 2006, 21:1887-1892.
    [10] Yang I V, Ropp P A, Thorp H H, Toward electrochemical resolution of two genes on one electrode: using 7 -deaza analogues of guanine and adenine to prepare PCR products with different[J]. Analytical Chemistry, 2002, 74:347-354.
    [11] Wu H W, Liu S C, Zhu W P, Jiang J H, Shen G L, Yu R Q. A sensitive electrochemical biosensor for detection of histone deacetylase activity using an acetylated peptide[J]. Electroanalysis, 2012, 24:2365-2370.
    [12] 刘劲刚, 计亮年. 多吡啶钌配合物作为DNA结构探针的研究[J]. 无机化学学报, 2000, 16:195-203.
    Liu J G, Ji L N. Studies of polypyridyl ruthenium(II) complexes as DNA probes[J]. Chinese Journal of
    Inorganic Chemistry, 2000, 16:195-203.
    [13] Lever A B P. Electrochemical parametrization of metal complex redox potentials, using the ruthenium (III)/
    ruthenium (II) couple to generate a ligand electrochemical series[J]. Inorganic Chemistry, 1990, 29:1271-1285.
    [14] Wang J. Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanalysis, 2005, 17:7-14.
    [15] Ji S B, Yan Z H, Wu J W, Chen L L, Li H. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors[J]. Biosensors and Bioelectronics, 2013, 39:106-111.
    [16] Amouyal E, Homsi A, Chambron J C, Sauvage J P. Synthesis and study of a mixed-ligand ruthenium (II)
    complex in its ground and excited states: bis(2,2′-bipyridine)(dipyrido[3,2-a:2′,3′-c] phenazine-N4N5)
    ruthenium(II)[J]. Journal of the Chemical Society, Dalton Transactions, 1990, 6:1841-1845.
    [17] Olson E J C, Hu D, H?rmann A, Jonkman A M, Arkin M R, Stemp E D A, Barton J K, Barbara P F. First
    observation of the key intermediate in the “light-switch” mechanism of [Ru(phen)2dppz]2+[J]. Journal of the
    American Chemical Society, 1997, 119:11458-11467.
    [18] Li Q, Li H, Du G F, Xu Z H. Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO electrode[J]. Journal of Hazardous Materials, 2010, 180:703-709.
    [19] Li H, Liu Y J, Xu J A, Xu Z H, Ji L N, Li W S, Chen H Y. DNA-enhanced assembly of [Ru(bpy)2ITATP]3+/2+
    on an ITO electrode[J]. Electrochimica Acta, 2007, 52:4956-4961.
    [20] Chang H C, Wu C C, Ding S J, Lin I S, Sun I W. Measurement of diffusion and partition coefficients of ferrocyanide in protein-immobilized membranes[J]. Analytica Chimica Acta, 2005, 532:209-214.
    [21] 陈琳琳, 刘俊辰, 江臻燊, 甘桂莲, 李红. 乙醇/Tris-水中Cu(II)对SDS和DNA增强[Ru(bpy)2(dppz)]2+光致发光的调控[J]. 无机化学学报, 2013, 29:1176-1184.
    Chen L L, Liu J C, Jiang Z S, Gan G L, Li H. Copper(II)-tuned photoluminescence of [Ru(bpy)2(dppz)]2+
    enhanced by SDS and DNA in ethanol and Tris-water mixtures[J]. Chinese Journal of Inorganic Chemistry,
    2013, 29:1176-1184.
    [22] 郭清宇, 邵将洋, 朱杏燕, 李红. DNA调制多吡啶钌(II)配合物在ITO上的电化学及光致发光性能研究[J]. 无机化学学报, 2010, 26:1729-1735.
    Guo Q Y, Shao J Y, Zhu X Y, Li H. Electrochemical and photo-luminescent properties modulated by DNA for
    polypyridyl ruthenium(II) complexes[J]. Chinese Journal of Inorganic Chemistry, 2010, 26:1729-1735.
    [23] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101:19-28.
    [24] Aalstad B, Ahlberg E, Parker V D. Normalized potential sweep voltammetry: Part II. Application to heterogeneous charge transfer kinetics[J]. Journal of Electroanalytical Chemistry, 1981, 122:195-204.

    [1] Hirsch R, Katz E, Willner I. Magneto-switchable bioelectrocatalysis[J]. Journal of the American Chemical Society, 2000, 122:12053-12054.
    [2] Rusling J F, Nassar A E F. Enhanced electron transfer for myoglobin in surfactant films on electrodes[J]. Journal of the American Chemical Society, 1993, 115:11891-11897.
    [3] Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events[J]. Journal of the American Chemical Society, 2004, 126:3010-3011.
    [4] Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L. Direct electron transfer between copper-containing proteins and electrodes[J]. Biosensors & Bioelectronics, 2005, 20:2517-2554.
    [5] 韩楠楠, 王慧, 栗娜, 周剑章, 林仲华, 吴迪, 万国江. 电沉积制备ZnO纳米棒修饰电极上氧化还原蛋白的电化学行为[J]. 物理化学学报, 2011, 27:468-472.
    Han N N, Wang H, Li N, Zhou J Z, Lin Z H, Wu D, Wan G J. Electrochemical behavior of redox proteins on ZnO nanorod-modified electrodes prepared by electrodeposition[J]. Acta Physico-Chimica Sinica, 2011, 27:468-472.
    [6] Liu G, Gooding J J. An interface comprising molecular wires and poly(ethylene glycol) spacer units self-assembled on carbon electrodes for studies of protein electrochemistry[J]. Langmuir, 2006, 22:7421-7430.
    [7] Smauel T, Kolk A H, Rümke P, Aarden L A, Bustin M. Histone and DNA detection in swollen spermatozoa and somatic cells, by immunofluorescence[J]. Clinical and Experimental Immunology, 1976, 24:63-71.
    [8] Cai H, Cao X, Jiang Y, He P G, Fang Y Z. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection[J]. Analytical and Bioanalytical Chemistry, 2003, 375:287-293.
    [9] Wang J, Electrochemical biosensors: Towards point-of-care cancer diagnostics[J]. Biosensors & Bioelectronics, 2006, 21:1887-1892.
    [10] Yang I V, Ropp P A, Thorp H H, Toward electrochemical resolution of two genes on one electrode: using 7 -deaza analogues of guanine and adenine to prepare PCR products with different[J]. Analytical Chemistry, 2002, 74:347-354.
    [11] Wu H W, Liu S C, Zhu W P, Jiang J H, Shen G L, Yu R Q. A sensitive electrochemical biosensor for detection of histone deacetylase activity using an acetylated peptide[J]. Electroanalysis, 2012, 24:2365-2370.
    [12] 刘劲刚, 计亮年. 多吡啶钌配合物作为DNA结构探针的研究[J]. 无机化学学报, 2000, 16:195-203.
    Liu J G, Ji L N. Studies of polypyridyl ruthenium(II) complexes as DNA probes[J]. Chinese Journal of
    Inorganic Chemistry, 2000, 16:195-203.
    [13] Lever A B P. Electrochemical parametrization of metal complex redox potentials, using the ruthenium (III)/
    ruthenium (II) couple to generate a ligand electrochemical series[J]. Inorganic Chemistry, 1990, 29:1271-1285.
    [14] Wang J. Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanalysis, 2005, 17:7-14.
    [15] Ji S B, Yan Z H, Wu J W, Chen L L, Li H. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors[J]. Biosensors and Bioelectronics, 2013, 39:106-111.
    [16] Amouyal E, Homsi A, Chambron J C, Sauvage J P. Synthesis and study of a mixed-ligand ruthenium (II)
    complex in its ground and excited states: bis(2,2′-bipyridine)(dipyrido[3,2-a:2′,3′-c] phenazine-N4N5)
    ruthenium(II)[J]. Journal of the Chemical Society, Dalton Transactions, 1990, 6:1841-1845.
    [17] Olson E J C, Hu D, H?rmann A, Jonkman A M, Arkin M R, Stemp E D A, Barton J K, Barbara P F. First
    observation of the key intermediate in the “light-switch” mechanism of [Ru(phen)2dppz]2+[J]. Journal of the
    American Chemical Society, 1997, 119:11458-11467.
    [18] Li Q, Li H, Du G F, Xu Z H. Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO electrode[J]. Journal of Hazardous Materials, 2010, 180:703-709.
    [19] Li H, Liu Y J, Xu J A, Xu Z H, Ji L N, Li W S, Chen H Y. DNA-enhanced assembly of [Ru(bpy)2ITATP]3+/2+
    on an ITO electrode[J]. Electrochimica Acta, 2007, 52:4956-4961.
    [20] Chang H C, Wu C C, Ding S J, Lin I S, Sun I W. Measurement of diffusion and partition coefficients of ferrocyanide in protein-immobilized membranes[J]. Analytica Chimica Acta, 2005, 532:209-214.
    [21] 陈琳琳, 刘俊辰, 江臻燊, 甘桂莲, 李红. 乙醇/Tris-水中Cu(II)对SDS和DNA增强[Ru(bpy)2(dppz)]2+光致发光的调控[J]. 无机化学学报, 2013, 29:1176-1184.
    Chen L L, Liu J C, Jiang Z S, Gan G L, Li H. Copper(II)-tuned photoluminescence of [Ru(bpy)2(dppz)]2+
    enhanced by SDS and DNA in ethanol and Tris-water mixtures[J]. Chinese Journal of Inorganic Chemistry,
    2013, 29:1176-1184.
    [22] 郭清宇, 邵将洋, 朱杏燕, 李红. DNA调制多吡啶钌(II)配合物在ITO上的电化学及光致发光性能研究[J]. 无机化学学报, 2010, 26:1729-1735.
    Guo Q Y, Shao J Y, Zhu X Y, Li H. Electrochemical and photo-luminescent properties modulated by DNA for
    polypyridyl ruthenium(II) complexes[J]. Chinese Journal of Inorganic Chemistry, 2010, 26:1729-1735.
    [23] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101:19-28.
    [24] Aalstad B, Ahlberg E, Parker V D. Normalized potential sweep voltammetry: Part II. Application to heterogeneous charge transfer kinetics[J]. Journal of Electroanalytical Chemistry, 1981, 122:195-204.

计量
  • 文章访问数:  1224
  • HTML全文浏览量:  64
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-06
  • 修回日期:  2014-11-08
  • 刊出日期:  2015-05-24

目录

    /

    返回文章
    返回