Unicity for Meromorphic Solutions of Some Difference Equations Sharing Three Values with Any Meromorphic Functions
-
摘要: 利用亚纯函数的Nevanlinna值分布理论和分类讨论的思想方法, 研究了差分方程a1(z)f(z+1)+a0(z)f(z)=0的有穷级亚纯解f(z)与任一亚纯函数g(z)分担0, 1, CM时的唯一性问题, 得到f(z)g(z)或者f(z)g(z)1, 其中a1(z)和a0(z)是非零多项式且满足a1(z)+a0(z)0.Abstract: 〖JP3〗By utilizing Nevanlinna's value distribution theory of meromorphic functions and categorized discussion method, the uniqueness of a finite-order meromorphic solution f(z) of the difference equation a1(z)f(z+1)+a0(z)f(z)=0 〖JP+1〗sharing 0, 1, 〖KG-1mm〗CM with any meromorphic function g(z) is investigated, and the result is given that f(z)〖JP2〗g(z) or f(z)g(z)1 under the above condition, where a1(z) and a0(z) are nonzero polynomials satisfying a1(z)+a0(z)0.〖JP〗
-
Keywords:
- meromorphic function /
- difference equation /
- shared values /
- uniqueness
-
-
-
期刊类型引用(2)
1. 吴丽镐,柴富杰,陈宝琴. 一阶线性差分方程解的唯一性. 南昌大学学报(理科版). 2023(05): 416-420+425 . 百度学术
2. Hongjin LIN,Junfan CHEN,Shuqing LIN. Uniqueness of Meromorphic Solutions for a Class of Complex Linear Differential-Difference Equations. Journal of Mathematical Research with Applications. 2022(04): 331-348 . 必应学术
其他类型引用(2)
计量
- 文章访问数: 1314
- HTML全文浏览量: 151
- PDF下载量: 213
- 被引次数: 4