高阶变系数函数方程解的振动准则

吴英柱

吴英柱. 高阶变系数函数方程解的振动准则[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 107-110. DOI: 10.6054/j.jscnun.2015.08.024
引用本文: 吴英柱. 高阶变系数函数方程解的振动准则[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 107-110. DOI: 10.6054/j.jscnun.2015.08.024
WU Yingzhu*. Oscillation Criteria of Solutions to Higher Order Variable Coefficient Functional Equations[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(2): 107-110. DOI: 10.6054/j.jscnun.2015.08.024
Citation: WU Yingzhu*. Oscillation Criteria of Solutions to Higher Order Variable Coefficient Functional Equations[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(2): 107-110. DOI: 10.6054/j.jscnun.2015.08.024

高阶变系数函数方程解的振动准则

基金项目: 

国家自然科学基金项目(1127380);茂名市科技计划项目(2014050);广东石油化工学院自然科学研究基金项目(513021)

详细信息
    作者简介:

    吴英柱,讲师,Email:wuyingzhu1978@163.com.

    通讯作者:

    吴英柱,讲师,Email:wuyingzhu1978@163.com.

  • 中图分类号: O175.1

Oscillation Criteria of Solutions to Higher Order Variable Coefficient Functional Equations

  • 摘要: 利用反复迭代的思想方法,讨论了一类高阶变系数函数方程x(g(t))=p(t)x(t)+〖DD(〗m〖〗i=1〖DD)〗Q_i(t)〖DD(〗s〖〗j=1〖DD)〗〖JB(|〗x(gk_j+i(t))〖JB)|〗a_jsgnx(gk_j+i(t))解的振动性,给出了这类函数方程一切解振动的几个充分条件:如果存在整数n0,使得lim〖DD(X〗t〖DD)〗sup〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-1〖〗k=1〖DD)〗p(gk(t))〖JB2*]〗aj1〖KG1.5mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I),则上述方程的一切解振动;如果存在一个整数n0,使得lim〖DD(X〗t〖DD)〗sup〖JB2*[〗p(g(t))〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-2〖〗k=1〖DD)〗pn(gk(t))〖JB2*]〗j+〖DD(〗m〖〗i=1〖DD)〗Qi(g(t))〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i〖〗k=2〖DD)〗pn(gk(t))〖JB2*]〗j〖JB2*]〗1〖KG1.5mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I),则上述方程的一切解也振动. 并且给出了该方程在差分方程中的若干应用.
    Abstract: By utilizing iterative method, oscillation of solutions to high-order variable coefficient functional differential equations of the form x(g(t))〖KG-*4〗=p(t)x(t)+〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB(|〗x(gk_j+i(t))〖JB)|〗ajsgn x(gkj+i(t)) is discussed. When n0, n is an integer, and lim〖DD(X〗t〖DD)〗sup〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-1〖〗k=1〖DD)〗p(gk(t))〖JB2*]〗aj1〖KG0.8mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I), all the solutions of the above equations are oscillation. When n0, n is an integer, and lim〖DD(X〗t〖DD)〗sup〖JB2*[〗p(g(t))〖DD(〗m〖〗i=1〖DD)〗Qi(t)〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i-2〖〗k=1〖DD)〗pn(gk(t))〖JB2*]〗j+〖DD(〗m〖〗i=1〖DD)〗Qi(g(t))〖DD(〗s〖〗j=1〖DD)〗〖JB2*[〗〖DD(〗kj+i〖〗k=2〖DD)〗pn(gk(t))〖JB2*]〗j〖JB2*]〗1〖KG1.5mm〗(t〖XC152HSW1.TIF;%85%85,JZ〗I), all the solutions of the above equations are oscillation. Some sufficient conditions for these equations are established. Some applications in difference equations are given.
  • 期刊类型引用(1)

    1. 王发令, 吴英柱. 高阶非线性泛函微分方程的振动准则. 广东石油化工学院学报. 2016(06): 67-70 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1292
  • HTML全文浏览量:  101
  • PDF下载量:  190
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-06-30
  • 刊出日期:  2016-03-24

目录

    /

    返回文章
    返回