Morphology Controlled Synthesis of Tubular Cu-doped ZnO Twinned Structure Materials For Photoluminescence Property
-
摘要: 采用直接沉淀法合成了具有六棱柱体形貌的Cu2+掺杂ZnO双晶结构材料,研究了Cu2+的存在对ZnO双晶的形成及形貌的影响,发现溶液中存在的Cu2+浓度越高,获得的Zn(Cu)O材料粒径越大,形貌从细长棒形逐步变为短粗六方柱体,长径比也从10:1变到1.2:1。采用简单的碱腐蚀法获得了管状结构的Cu2+掺杂Zn(Cu)O材料,并探讨了管状结构的形成机理。Cu掺杂使得Zn(Cu)O样品的绿光发射由550nm蓝移至520nm附近,且强度大幅增加。形成管状结构使绿光发射进一步增强,该发射由Cu2+掺杂引起的样品内部的Cu2+与Cu+之间的相互转变引起。
-
关键词:
- 光致荧光
Abstract: The Cu-doped ZnO twinned structure materials with hexagonal prism morphology were synthesized by direct precipitation and the effects of Cu2+ ion on the formation of twinned structure and morphology were investigated. With the increase of Cu2+ concentration in reaction solution the particle sizes of as-prepared ZnO materials increased following the change of morphologies from slender rod to stumpy hexagonal prism and the decrease of length-diameter ratios from 10:1 to 1.2:1. The tubular Cu-doped ZnO materials were obtained via corroding process by concentrated aqueous alkali and the formation mechanism was proposed. The photoluminescence properties of Zn(Cu)O materials were studied and the Cu-doped ZnO showed broad and strong green emission at 520 nm, attributed to the transition of copper ion between Cu2+ and Cu+ in interior of ZnO crystal. The formation of tubular construction enhance the intensity of green emission.-
Keywords:
- photoluminescence
-
-
[1] Klingshirn C, ZnO: Material, Physics and Applications [J].ChemPhysChem, 2007, 8:782–803
[2] Jin D H, Kim D, Seo Y, et al, Morphology-controlled synthesis of ZnO crystals with twinned structures and the morphology dependence of their antibacterial activities[J].Materials Letters, 2014, 115:205–207
[3] Kim Y, Seshadri R, Optical Properties of Cation-Substituted Zinc Oxide[J].Inorganic Chemistry, 2008, 47: 8437–8443
[4] Ferhat M, Zaoui A, Ahuja R, Magnetism and band gap narrowing in Cu-doped ZnO[J].Applied Physics Letters, 2009, 94, 142502–1-3
[5] 邢伯阳, 牛世峰, Cu掺杂ZnO纳米粒子的光学性能及铁磁性[J].材料科学与工程学报, 2012, 30(3):333–336
[6] Mahanti M, Basak D, Cu/ZnO nanorods′ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance[J].Journal of Luminescence, 2014, 145:19–24
[7] Hu H M, Deng C H, Huang X H, Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes[J].Materials Chemistry and Physics, 2010, 121: 364–369
[8] 黄明,万霞,铁绍龙,管状氧化锌的碱溶法合成及光催化降解亚甲基蓝的性能[J].华南师范大学学报(自然科学版),2014, 46(5):0-0(即将正式出版)
[9] 李汶军, 施尔畏, 负离子配位多面体生长基元的理论模型与晶粒形貌[J].人工晶体学报, 1999, 28(2): 117–125
[10] Li W J, Shi E W, Zhong W Z, et al, Growth mechanism and growth habit of oxide crystals[J].Journal of Crystal Growth, 1999, 203:186–196
[11]王步国, 仲维卓, 施尔畏, 等.ZnO晶体的极性生长习性与双晶的形成机理[J].人工晶体学报, 1997, 26(2):102-107
[12] Chu D, Masuda Y, Ohji T, et al, Formation and photocatalytic application of ZnO nanotubes using aqueous solution[J].Langmuir, 2010, 26(4):2811–2815
[13] Gladyshchuk A A, Gurskii A L, Nikitenko V A, et al, Luminescence of ZnO monocrystals at excitation by streamer discharges and laser radiation[J].Journal of Luminescence, 1988, 42(1):49–55
[14] Xu P S, Sun Y M, Shi C S, et al, Electronic structure of ZnO and its defects[J].Science in China (A), 2001, 44(9):1174–1181
[15]. Vanheusden K, Seager C H, Warren W L, et al, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J], Applied Physics Letters, 1996, 68:403–405
[16] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al, The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation[J].Journal Physics Chemistry B, 2000, 104:1715–1723
[17]. Djuri?i? A B, Leung Y H, Tam K H, Green, yellow, and orange defect emission from ZnO nanostructures:Influence of excitation wavelength[J], Applied Physics Letters, 2006, 88:103107-1-3
[18] Liang G F, Hu L W, Feng W, et al, Enhanced photocatalytic performance of ferromagnetic ZnO:Cu hierarchical microstructures[J].Applied Surface Science, 2014, 296:158–162
[19] Garces N Y, Wang L, Bai L, et al, Role of copper in the green luminescence from ZnO crystals[J].Applied Physics Letters, 2002, 81:622–624[1] Klingshirn C, ZnO: Material, Physics and Applications [J].ChemPhysChem, 2007, 8:782–803
[2] Jin D H, Kim D, Seo Y, et al, Morphology-controlled synthesis of ZnO crystals with twinned structures and the morphology dependence of their antibacterial activities[J].Materials Letters, 2014, 115:205–207
[3] Kim Y, Seshadri R, Optical Properties of Cation-Substituted Zinc Oxide[J].Inorganic Chemistry, 2008, 47: 8437–8443
[4] Ferhat M, Zaoui A, Ahuja R, Magnetism and band gap narrowing in Cu-doped ZnO[J].Applied Physics Letters, 2009, 94, 142502–1-3
[5] 邢伯阳, 牛世峰, Cu掺杂ZnO纳米粒子的光学性能及铁磁性[J].材料科学与工程学报, 2012, 30(3):333–336
[6] Mahanti M, Basak D, Cu/ZnO nanorods′ hybrid showing enhanced photoluminescence properties due to surface plasmon resonance[J].Journal of Luminescence, 2014, 145:19–24
[7] Hu H M, Deng C H, Huang X H, Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes[J].Materials Chemistry and Physics, 2010, 121: 364–369
[8] 黄明,万霞,铁绍龙,管状氧化锌的碱溶法合成及光催化降解亚甲基蓝的性能[J].华南师范大学学报(自然科学版),2014, 46(5):0-0(即将正式出版)
[9] 李汶军, 施尔畏, 负离子配位多面体生长基元的理论模型与晶粒形貌[J].人工晶体学报, 1999, 28(2): 117–125
[10] Li W J, Shi E W, Zhong W Z, et al, Growth mechanism and growth habit of oxide crystals[J].Journal of Crystal Growth, 1999, 203:186–196
[11]王步国, 仲维卓, 施尔畏, 等.ZnO晶体的极性生长习性与双晶的形成机理[J].人工晶体学报, 1997, 26(2):102-107
[12] Chu D, Masuda Y, Ohji T, et al, Formation and photocatalytic application of ZnO nanotubes using aqueous solution[J].Langmuir, 2010, 26(4):2811–2815
[13] Gladyshchuk A A, Gurskii A L, Nikitenko V A, et al, Luminescence of ZnO monocrystals at excitation by streamer discharges and laser radiation[J].Journal of Luminescence, 1988, 42(1):49–55
[14] Xu P S, Sun Y M, Shi C S, et al, Electronic structure of ZnO and its defects[J].Science in China (A), 2001, 44(9):1174–1181
[15]. Vanheusden K, Seager C H, Warren W L, et al, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J], Applied Physics Letters, 1996, 68:403–405
[16] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al, The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation[J].Journal Physics Chemistry B, 2000, 104:1715–1723
[17]. Djuri?i? A B, Leung Y H, Tam K H, Green, yellow, and orange defect emission from ZnO nanostructures:Influence of excitation wavelength[J], Applied Physics Letters, 2006, 88:103107-1-3
[18] Liang G F, Hu L W, Feng W, et al, Enhanced photocatalytic performance of ferromagnetic ZnO:Cu hierarchical microstructures[J].Applied Surface Science, 2014, 296:158–162
[19] Garces N Y, Wang L, Bai L, et al, Role of copper in the green luminescence from ZnO crystals[J].Applied Physics Letters, 2002, 81:622–624 -
期刊类型引用(2)
1. 贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究. 华南师范大学学报(自然科学版). 2019(04): 1-6 . 百度学术
2. 郎集会, 孙雨婷, 李香兰, 王佳英, 张哲. 稀土Eu掺杂ZnO纳米棒的水热合成及其光学性质. 华南师范大学学报(自然科学版). 2018(02): 25-29 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1346
- HTML全文浏览量: 128
- PDF下载量: 210
- 被引次数: 2