A POSTERIORI ERROR ESTIMATE OF DISCONTINUOUS GALERKIN METHODS FOR H(curl)-ELLIPTIC PROBLEMS
-
摘要: 针对 Lipschitz 多面体区域上 -椭圆问题的不连续 Galerkin 法, 提出了一种新的基于残量型的后验误差估计, 并证明了该后验误差的一个上界估计. 其中问题的最困难性在于如何处理跳跃项中出现的局部网格尺寸的负次幂.
-
关键词:
- 不连续Galerkin法 /
- 后验误差估计 /
- H(curl)-椭圆问题
Abstract: A new posteriori error estimate based on residual for discontinuous Galerkin discretizations of H(curl)-elliptic problems on Lipschitz polyhedron is proposed. The corresponding upper bound is proved, where one of the most difficult problem is how to deal with the presence of the negative power of the local mesh size in the jump term. -
-
[1] BOSSAVIT A. Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elments[M].Academic Press, San Diego, CA, 1998.
[2] CARSTENSEN C, HOPPE R. Unified framework for an a posteriori error analysis of non-standard fi- nite element approximations of H(curl)-elliptic problems[C]//IEEE International Conference on Elec- tromagnetics in Advanced Applications(ICEAA’09), Torino, Italy, 2009: 754-755.
[3] CARSTENSEN C, HOPPE R, SHARMA N, WARBURTON T. Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems [J]. Numer Math Theor Meth Appl, 2011 4(1):13-37
[4] HIPTMAIR R. Multigrid method for Maxwell’s equations [J]. SIAM J Numer Anal, 1999, 36(1):204- 225.
[5] HOUSTON P, PERUGIA I,SCHENEEBELI A, SCHOTZAU D. Interior penalty method for the indefinite time-harmonic Maxwell equations [J]. Numer Math, 2005, 100(3):485-518.
[6] HOUSTON P, PERUGIA I, SCHOTZAU D.Mixed discontinuous Galerkin approximation of the Maxwell operator [J]. SIAM J Numer Anal, 2005, 42(1):434-459.
[7] HOUSTON P, PERUGIA I, SCHOTZAU D. An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations [J]. IMA J Numer Anal, 2007, 27(1):122-150.
[8] PERUGIA I, SCHOTZAU D, MONK P. Stabilized interior penalty methods for the time-harmonic Maxwell equations [J]. Comput Methods Appl Mech Eng, 2002,191(41-42):4675-4697.
[9] SCHOBERL J. A posteriori error estimates for Maxwell equations [J]. Math Comp, 2008, 77(262):633- 649.[1] BOSSAVIT A. Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elments[M].Academic Press, San Diego, CA, 1998. [2] CARSTENSEN C, HOPPE R. Unified framework for an a posteriori error analysis of non-standard fi- nite element approximations of H(curl)-elliptic problems[C]//IEEE International Conference on Elec- tromagnetics in Advanced Applications(ICEAA’09), Torino, Italy, 2009: 754-755. [3] CARSTENSEN C, HOPPE R, SHARMA N, WARBURTON T. Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems [J]. Numer Math Theor Meth Appl, 2011 4(1):13-37 [4] HIPTMAIR R. Multigrid method for Maxwell’s equations [J]. SIAM J Numer Anal, 1999, 36(1):204- 225. [5] HOUSTON P, PERUGIA I,SCHENEEBELI A, SCHOTZAU D. Interior penalty method for the indefinite time-harmonic Maxwell equations [J]. Numer Math, 2005, 100(3):485-518. [6] HOUSTON P, PERUGIA I, SCHOTZAU D.Mixed discontinuous Galerkin approximation of the Maxwell operator [J]. SIAM J Numer Anal, 2005, 42(1):434-459. [7] HOUSTON P, PERUGIA I, SCHOTZAU D. An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations [J]. IMA J Numer Anal, 2007, 27(1):122-150. [8] PERUGIA I, SCHOTZAU D, MONK P. Stabilized interior penalty methods for the time-harmonic Maxwell equations [J]. Comput Methods Appl Mech Eng, 2002,191(41-42):4675-4697. [9] SCHOBERL J. A posteriori error estimates for Maxwell equations [J]. Math Comp, 2008, 77(262):633- 649.
-
期刊类型引用(3)
1. 刘婧怡,蒋雅萌,冯伟,郑凤,许新华. 自愈合离子凝胶的制备及传感测试. 大学化学. 2022(05): 304-310 . 百度学术
2. 郭媛媛,蒋洪伟,袁冬,唐彪,周国富. 电润湿显示材料与器件技术研究进展. 液晶与显示. 2022(08): 925-941 . 百度学术
3. 刘丽明,闫航瑞. 氯化钠液滴在特氟龙表面润湿行为的电控调节研究. 传感器与微系统. 2021(02): 38-40+43 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1607
- HTML全文浏览量: 74
- PDF下载量: 1186
- 被引次数: 4