邢小青, 钟柳强. H(curl)-椭圆问题不连续Galerkin法的后验误差估计[J]. 华南师范大学学报(自然科学版), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.003
引用本文: 邢小青, 钟柳强. H(curl)-椭圆问题不连续Galerkin法的后验误差估计[J]. 华南师范大学学报(自然科学版), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.003
Xiao-qing Xing, Liu-qiang ZHONG. A POSTERIORI ERROR ESTIMATE OF DISCONTINUOUS GALERKIN METHODS FOR H(curl)-ELLIPTIC PROBLEMS[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.003
Citation: Xiao-qing Xing, Liu-qiang ZHONG. A POSTERIORI ERROR ESTIMATE OF DISCONTINUOUS GALERKIN METHODS FOR H(curl)-ELLIPTIC PROBLEMS[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.003

H(curl)-椭圆问题不连续Galerkin法的后验误差估计

A POSTERIORI ERROR ESTIMATE OF DISCONTINUOUS GALERKIN METHODS FOR H(curl)-ELLIPTIC PROBLEMS

  • 摘要: 针对 Lipschitz 多面体区域上 -椭圆问题的不连续 Galerkin 法, 提出了一种新的基于残量型的后验误差估计, 并证明了该后验误差的一个上界估计. 其中问题的最困难性在于如何处理跳跃项中出现的局部网格尺寸的负次幂.

     

    Abstract: A new posteriori error estimate based on residual for discontinuous Galerkin discretizations of \boldsymbolH(\boldsymbolcurl)-elliptic problems on Lipschitz polyhedron is proposed. The corresponding upper bound is proved, where one of the most difficult problem is how to deal with the presence of the negative power of the local mesh size in the jump term.

     

/

返回文章
返回